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Abstract

This paper studies how the organizational structure–whether decisions are made at headquar-

ters or regional divisions–of multi-region firms influences their expectations formation and

price-setting behavior when paying attention to shocks is costly. To do so, I develop a dynamic

general equilibrium model with multi-region, rationally inattentive firms in which firms col-

lect information on both aggregate and region-specific shocks. When decisions are made at

headquarters, firms allocate attention between overall demand and regional demand differ-

ences, ignoring the latter as geographic dispersion increases. In contrast, when decisions are

decentralized, regional divisions focus solely on their own demand. I calibrate the model to

U.S. Federal Reserve districts, matching the average within-firm across-regions relative price

dispersion in NielsenIQ scanner data. In the calibrated model, monetary shocks have real ef-

fects that are six times larger under regional decision-making compared to headquarters, and

region-specific shocks spill over to other regions when decisions are centralized. Empirically,

scanner data reveals that, even after accounting for distance, product-level relative price dis-

persion between regions is smaller within the same retail chain than across different chains, a

result qualitatively replicated by the model.
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1 Introduction

Consider a grocery store, part of a local chain, and its pricing decision. The Federal Reserve is

set to announce a major interest rate decision today, but it’s unlikely the local chain is paying

much attention to it. Its focus is on understanding its own local demand and responding to what’s

happening locally, so broader economic changes might not play a big role in its pricing decisions.

Now think about Walmart, which is a national chain that operates across multiple states. Un-

like the local chain, Walmart needs to account not only for the local demand but also for demand

across all the regions it serves. With vast information coming from various locations, tracking ev-

ery local detail can be overwhelming and costly. Instead of focusing on subtle differences in local

conditions, the chain may be better off by simplifying its approach, paying more attention to na-

tional trends, such as the Federal Reserve’s policy decisions, which affect all there regions where it

operates. This can lead to similar pricing across the chain’s locations, even when local economic

conditions vary.

In such a situation, three key research questions arise: (1) How do firms operating in multi-

ple regions manage the complexity of setting prices when paying attention to both monetary and

region-specific shocks is costly? (2) How does a firm’s organizational structure – whether decisions

are centralized at headquarters or decentralized to regional divisions – affect its optimal informa-

tion acquisition and pricing strategy? (3) How do these factors affect the real effects of monetary

policy and the propagation of regional shocks across the economy?

To address these questions, this paper develops a dynamic general equilibrium model with

multi-region, rationally inattentive firms. Specifically, firms face limited capacity to process in-

formation on the numerous shocks affecting the economy and must optimally decide how many

signals to acquire, which linear combination of shocks the signals capture, and their precision.

Once these ingredients are introduced, the role of the firm’s organizational structure in decision-

making becomes essential, as solving for the firms optimal decisions as a whole is not equivalent to

solving each regional division’s problem individually. They also endogenously generate a relation-

ship between the number of regions in which a firm operates and its expectations about aggregate

variables, which affects its within-firm price dispersion across regions, potentially resulting in uni-

form pricing. I calibrate the model U.S. grocery scanner data. The results show that when pricing

decisions are made at the regional division level, monetary policy has about six times larger effects

on aggregate GDP than when decisions are centralized at the headquarters. Additionally, under

headquarters level decision-making, region-specific shocks spill over to other regions through the
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firm’s network of establishments, a feature absent in regional division decision-making. Empiri-

cally, using U.S. scanner prices, I find that product-level relative price dispersion between regions

increases with distance, consistent with the literature on the failure of the Law of One Price. How-

ever, even after accounting for distance, product-level relative price dispersion between regions is

smaller within the same retail chain than across different chains, a result my model qualitatively

replicates.

The basic model in Section 2 provides closed-form characterization of multi-region firms’ op-

timal beliefs and optimal pricing under rational inattention in a static framework. A multi-region

rationally inattentive firm must acquire information about region-specific and aggregate shocks

that affect its prices, subject to a information capacity constraint. As the number of regions in

which a firm operates increases, the number of fundamental shocks that directly affect firms’ total

profits increases as well. Firms’ optimal beliefs depend on whether firms’ decisions are made at the

headquarters level, in a centralized way, or at the regional division level, in a decentralized way. A

common feature of the firms’ optimal beliefs is that they are rationally confused about the region-

specific and aggregate shocks. In my baseline framework, I assume that decisions are made at the

headquarters level. Then, I explore the case where the firm solves each region’s problem indepen-

dently, subject to a fraction of the firms total capacity, to investigate how a firm’s organizational

structure affects the propagation of shocks throughout the economy.

When decisions are made at the headquarters level, multi-region rationally inattentive firms’

optimal beliefs consist of one signal about their overall demand condition and signals about its

regions’ relative demand conditions. When the firm is sufficiently geographically dispersed, as

measured by the number of regions in which it is present, it optimally chooses to ignore the signals

about its regions’ relative demand and acquire only the signal about its overall demand condition.

Within my setting, this results in uniform pricing–that is, firms set the same price across regions

where they operate, as the firm will use only the signal about its overall demand to set prices.

This centralized decision-making leads to a dampened price response to aggregate shocks

compared to the full information case1. Firms observe signals that combine both aggregate and

region-specific shocks, and when an aggregate shock occurs, they are unable to fully distinguish

whether it is an aggregate or a region-specific shock, resulting in a dampened price response to

aggregate shocks. Additionally, a firm’s price in one region is affected not only by its own region-

specific shock but also by shocks in other regions where the firm operates. This creates regional

1This feature is present even when a firm operates in a single region and it is akin to Lucas (1972) signal-extraction
problem.
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spillovers of these shocks. Since firms receive noisy signals about their overall and regions’ relative

demand across regions, they are unable to fully identify the origin of a region-specific shock. As a

result, prices in one region are affected by shocks in other regions where the firm operates.

When decisions are decentralized to regional divisions, each division operates as if it were a

single-region rationally inattentive firm, with access to only a fraction of the firm’s total capac-

ity. Each division’s optimal belief consists of a single signal about its own demand conditions.

Like headquarters level decision-making, this leads to dampened price responses to aggregate

shocks compared to the full information case. However, unlike in the headquarters level decision-

making, a region’s price is only affected by its own region’s shocks. As a result, there are no regional

spillovers of shocks through the firm’s internal network of establishments.

To assess the macroeconomics impacts of organizational structure in multi-region, rationally

inattentive firms, Section 3 extends the basic static framework into a dynamic general equilib-

rium model to compare the propagation of monetary and region-specific shocks when decisions

are made at the headquarters versus the regional division level. The economy consists of a finite

number regions, each with a representative household that has preferences over different retailers.

The model features a common monetary shock, and region-specific markup shocks. Retailers are

heterogeneous in the set of regions they operate in, which is given exogenously, disciplined using

the NielsenIQ scanner data, and set prices under monopolistic competition within those regions.

Importantly, they are rationally inattentive and take decisions at the headquarters level. Given the

constraints on the amount of information (capacity) they can process about the numerous shocks

affecting the economy, firms must decide how many signals to acquire, what linear combination

of shocks these signals should capture, and the precision with which they observe them.

The quantitative model is calibrated using data from the United States, where each region cor-

responds to one of the twelve Federal Reserve districts, assuming that decision-making is made at

the headquarters level. The supply side of the economy is calibrated using NielsenIQ scanner data

from U.S. grocery retailers. A key contribution of this study is the calibration of firms’ informa-

tion capacity, using a specific moment from the data that reflects how informationally constrained

firms are. When a firm has limited capacity, its within-firm price dispersion across markets re-

mains small relative to the economy-wide price dispersion, regardless of how geographically dis-

persed the firm is. As the firm’s capacity increases, it begins to set prices closer to what would

occur under full information, leading to greater within-firm price dispersion across markets rel-

ative to the economy-wide price dispersion. Averaging this relative within-firm price dispersion

across firms and over time reveals a monotonic relationship between price dispersion and firms’
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capacity, enabling my calibration strategy.

Once I calibrate the model, I compare the cumulative impulse response of aggregate GDP

to a expansionary monetary shock under headquarters against regional division level decision-

making. I find that under regional division level decision-making, monetary shocks have six times

larger real effects on aggregate GDP compared to headquarters level decision-making. On the one

hand, when decisions are made at the headquarters level, the firm has to divide its capacity in po-

tentially many signals, which lowers the capacity dedicated to the overall demand signal. On the

other hand, when decisions are made at the regional division level, while each regional division

puts all of its capacity into the signal about its own demand, its capacity is just a share of firm’s

total capacity, as firm basically reallocates its total capacity across its regional divisions.

The quantitative implications of organizational structure for the propagation of region-specific

shocks depend on the specific region affected. Although the aggregate effects of regional shocks

are not significantly different between the two organizational structures – with the cumulative im-

pulse response of aggregate GDP to a positive regional markup shock decline being between 0.5%

and 10% lower under regional divisions compared to headquarters decision-making – the distribu-

tional effects are substantial. In an economy where regional divisions make decisions, the markup

shock remains confined to the affected region. However, in the calibrated model, where deci-

sions are made at the headquarters level, the firm’s network of locations allows regional shocks

to propagate across multiple regions. For instance, a positive markup shock in the Atlanta Fed

district causes a contraction in the district’s GDP, both in the calibrated economy and in the econ-

omy with regional division decision-making. However, under regional division decision-making,

the shock is contained within the Atlanta Fed district and does not spill over to other regions. In

contrast, in the calibrated economy, the shock propagates through the firm’s network of locations,

affecting all regions except the Boston and New York Fed districts. Moreover, the spillover is quan-

titatively significant for certain regions; for example, the GDP contraction in the Cleveland Fed

district amounts to about 15% of the contraction experienced in the Atlanta Fed district, where the

shock originated.

Finally, I validate the model by examining gravity-type regressions, similar to Engel and Rogers

(1996), and assessing whether relative-price dispersion between counties decreases when compar-

ing prices within the same chain. I first find that the relative-price dispersion of the same product

between counties is smaller when you compare prices for the same chain, even after controlling

for distance. Using NielsenIQ Scanner Data, I construct a dataset with random pairs of prices for

the same good, allowing for variation in location and firm. This enables comparisons of prices
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both across regions and firms. For each pair, I calculate the standard deviation of their log price

difference over time. Cross-sectional regressions confirm that price dispersion decreases when

comparing prices within the same chain, even accounting for county distance. When I replicate

this regression within my calibrated model, the results shows qualitatively that price comparisons

within the same chain reduce relative-price dispersion between regions, giving support that ratio-

nal inattention can be an explanation for the low within-firm price dispersion across markets that

we see in the data.

Related literature. This paper is motivated by a literature that documents that retail chains charge

nearly uniform pricing across markets. DellaVigna and Gentzkow (2019) documents uniform pric-

ing in U.S. grocery goods and suggests managerial inertia2 as a likely mechanism for this. Similarly,

Daruich and Kozlowski (2023) finds evidence of uniform pricing in grocery prices in Argentina,

showing that this affects the elasticity of prices to regional versus aggregate shocks. Garcia-Lembergman

(2020) shows that county-level prices are affected by local demand shocks from other counties

served by the same retail chains, suggesting that uniform pricing is the underlying reason. This

phenomenon extends beyond prices, as Hazell, Patterson, Sarsons, and Taska (2023) studies it in

the context of national wage setting, and Hyun and Kim (2019) in the context of uniform product

replacement. These papers take uniformity of firms’ decisions across establishments as a con-

straint for them and then explore the implications of the optimizing behavior under this assump-

tion. In contrast to them, I provide a theory that can endogenously generate uniformity of actions

across establishments, particularly focusing on the limited variation of within-firm prices across

markets.

This paper also speaks to the literature on spatial spillovers of local shocks through a firm’s

internal network. For instance, Giroud and Mueller (2019) explore how financially constrained,

multi-region firms propagate local shocks through internal resource allocation, while Gumpert,

Steimer, and Antoni (2021) highlight that the managerial organization of multiestablishment firms

is interdependent across establishments. My model adds to this literature by focusing on firms’

optimal information acquisition about the different shocks in the economy as a story that can

generate regional spillovers of local shocks.

Furthermore, my work is also related to the pricing-to-market literature that explores why the

law of one price does not hold. Using the NielsenIQ scanner data, I run gravity type regressions

as in Engel and Rogers (1996) and Broda and Weinstein (2008) to show that a product’s relative

price dispersion between counties decreases when we compare prices within the same chain, as

2Which includes both agency frictions and behavioral factors that prevents firms from setting optimal prices.
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opposed to prices between chain, even after controlling for distance. My findings bridge both the

literature on why the law of one price does not hold and the fact that within firm price dispersion

across markets is low. On the theory side, I provide a novel mechanism that can explain this fact.

Building on these empirical insights, I develop a model that builds on the rational inattention

in monetary economics literature. This literature proposes that costs of information processing

can inertia in price responses to monetary shocks observed in the data and large monetary non-

neutrality (Sims, 2003, 2010; Mackowiak and Wiederholt, 2009). Matějka (2015) and Stevens (2019)

show that rational inattention can endgenously generate discreteness in prices in the time series,

a fact that is observed in the data. My paper adds to this literature by showing that rational inat-

tention can also be a mechanism that generates coarseness in prices in the cross-section of estab-

lishments within a firm.

To construct this result, I rely on the rational inattention models that consider multiple actions

and multiple states. Pasten and Schoenle (2016) and Yang (2022) build models with multi-product

rationally inattentive firms to show their implications for monetary non-neutrality, assuming that

signal loadings are exogenous. In contrast to them, I solve for a general signal structure. Related

to this paper is Fulton (2022), who uses a two-market firm pricing problem to show how infor-

mation acquisition costs can lead to uniform pricing. In contrast, I consider an arbitrary number

of regions and show that the number of regions where a firm is present may give rise to uniform

pricing. Additionally, I build a dynamic general equilibrium model to assess the implications of a

firm’s organization structure for monetary non-neutrality. Finally, this paper builds on the litera-

ture studying dynamic rational inattention problems (DRIP) in linear-quadratic gaussian settings

(Afrouzi and Yang, 2021; Miao, Wu, and Young, 2022). In particular, I use the toolkit developed in

Afrouzi and Yang (2021) to solve for the optimal steady-state information structure.

2 Static Pricing for a Rationally Inattentive Multi-Region Firm

In this section, I study how the number of regions in which a firm operates affects its expectations

and pricing behavior. I begin by considering a static framework where a rationally inattentive,

multi-region firm determines how much information to acquire and how to set its prices. The only

source of heterogeneity in this framework is the number of regions a firm operates. This is exoge-

nous in my framework. The model offers closed-form solutions, providing insight into when the

firm opts for a single signal about its overall demand – a uniform pricing policy – versus acquiring

as many signals as regions where it operates – a pricing-to-market policy. Finally, I explore the
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case where the firm solves each region’s problem independently to investigate how a firm’s organi-

zational structure affects the propagation of shocks throughout the economy.

2.1 Environment

Consider an economy with n ∈N symmetric locations, each island indexed by l = 1,2, . . . ,n. Con-

sider a firm j that is present in k islands, k ∈N,k ≤ n. Let [k] be the set of locations in which the

firm is present. Given the symmetry of the locations, assume, without loss of generality, that [k] =
{1,2, . . . ,k}. There are n +1 fundamental shocks: one common monetary shock, m, and n island-

specific shocks, {λl }l∈[n],such that the vector of shocks is given by~x = (m,λ1, . . . ,λn)′ ∈N (~0,In+1).

Let π j (~p j ;~x) be the profit of the firm when it charges ~p j = (p1 j , p2 j , . . . , pk j )′ ∈ Rk . If the firm was

able to perfectly observe all shocks and in the absence of any friction, it would choose

~p¦
j ≡ max

~y∈Rk
π j (~y ;~x)

where ~p¦
j are firm’s ideal prices. If it does not set prices equal to their ideal levels, it incurs quadratic

total profit losses, which are given by

L(~p j ;m,λ1, . . . ,λn) = ∑
l∈{1,...,k}

B

2
(pl j −p¦

l j )2

with B
2 (pl j − p¦

l j )2 being the region l ’s profit loss. B is a concavity parameter of the profit loss

function3 and p¦
l j is firm’s j ideal price in island l , defined as the price that firm j would set in

location l in the absence of any friction, and it is given by

p¦
l j = m +λl , l ∈ {1, . . . ,k} or in matrix form ~p¦

j = H′
k~x

where Hk ∈ R(n+1)×k is a matrix that maps the fundamental shocks~x into the ideal prices and it is

indexed by k to denote that it is a the matrix corresponding to a firm that is in [k]. While here I

assume that the ideal price has this form, it arises endogenously in my dynamic framework. In the

absence of any friction, firm j chooses pl j = p¦
l j ,∀l ∈ [k], and the profit losses are zero. However,

firms are rationally inattentive.

3In principle, this may depend on l and j . However, as a result of the assumption of symmetric islands, Bl j = B ,
∀l ∈ [k],∀ j . In the quantitative model, this will be a function of l and the number of regions a firm is present.
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2.2 Economics of Attention Allocation

Assume that firm j is subject to a finite attention capacity κ ∈R+ and must optimally allocate this

capacity into different signals – noisy linear combinations of the shocks. Given the chosen signals,

the firm chooses a price function that maps these signals into actions.

Optimal Information Allocation When Decisions Are at the Headquarters Level. When decisions

are made at the headquarters level, the headquarters optimally chooses signals and the price func-

tion considering the firm’s total profit loss. The attention allocation problem can be written as

max
S j 0⊂S

E
[

max
~p j :S0

j→Rk
E
[− ∑

l∈{1,...,k}

B

2
(pl j −p¦

l j )2|S0
j

]]
(1)

s.t. I (S0
j ;~x|S−1

j ) ≤ κ (2)

S0
j = S j 0 ∪S−1

j (3)

S−1
j given (4)

where constraint (2) is the capacity constraint and I (S0
j ;~x|S−1

j ) is the conditional Shannon’s mu-

tual information function and measures the amount of information that firm’s signal history S0
j

contains about~x, conditional on S−1
j . The more informative is S0

j about~x conditional on S−1
j , the

larger is this measure. Equation (3) captures the evolution of firm’s information set. In particu-

lar, it states that the firm does not forget information. Equation (4) is the initial prior uncertainty,

exogenously given. Firms have a given capacity κ and allocate it across different signals.

Equation (1) can be rewritten as a maximization problem in which the firm chooses an optimal

posterior variance-covariance matrix of the shocks (Kőszegi and Matějka, 2020; Afrouzi and Yang,

2021; Fulton, 2022) and given by

max
Σ0

−1

2
tr (Σ0

˜̃Ω) (5)

s.t.
1

2
ln

( |Σ−1|
|Σ0|

)
≤ κ (6)

Σ−1 −Σ0 º 0 (7)

0 ≺Σ−1 ¹∞ (8)

where I omit the index j . tr (.) is the trace operator, |.| is the determinant operator, º denotes pos-

itive semidefiniteness, Σ0 is the posterior variance-covariance matrix of the fundamental shocks

given the history of signals S0. That is, Σ0 ≡ E
[
(~x −E[~x|S0])(~x −E[~x|S0])′|S0

]
.
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Σ−1 ≡ E
[
(~x −E[~x|S−1])(~x −E[~x|S−1])′|S−1

]
is the prior variance-covariance matrix of the fundamen-

tal shocks given S−1. ˜̃Ω≡ Hdiag(B)H′ is a benefit matrix that governs how important are the many

fundamental shocks for the firm’s profit loss, where diag(B) is a matrix whose diagonal is given by

B , and off-diagonal elements are zero. Constraint (6) is the capacity constraint. Finally, constraint

(7) is the set of no-forgetting constraints. It states that the firm cannot choose to be more uncertain

along any dimension than its prior uncertainty.

Assumption 1. Σ−1 = I

Assumption 1 states that the firm has the same prior uncertainty regarding any shocks. In

Proposition A.3, I allow prior uncertainty about the aggregate shock and regional shocks to be

different.

Proposition 1. (Optimal Signal Structure under Headquarters’ Pricing) Under Assumption 1, the

solution to the problem in Equation (5)-Equation (8) is such that there exists a threshold k(κ) =
e2κ−1 such that if k ≥ k, the firm acquires one signal4, while if k < k(κ), the firm acquires k signals.

When the firm acquires one signal, it acquires a signal about its overall demand:

sHQ
1 = 1√

1+ 1
k

( 1

k

k∑
l=1

p¦
l︸ ︷︷ ︸

average
ideal price

)
+νHQ

1 , ν
HQ
1 ∼N

(
0,

1

e2κ−1

)

When the firm acquires k signals, it acquires a signal about its overall demand:

sHQ
1 = 1√

1+ 1
k

( 1

k

k∑
l=1

p¦
l︸ ︷︷ ︸

average
ideal price

)
+νHQ

1 , ν
HQ
1 ∼N

(
0,

1

(k +1)1− 1
k (e2κ)

1
k −1

)

and k −1 signals about regional relative demands:

sHQ
i = 1√

1+ 1
i−1

(p¦
i−1 −

1

i −1

i−1∑
m=2

p¦
m−1 −

1

i −1
p¦

k )+νHQ
i , ν

HQ
i ∼N

(
0,

1

(k +1)−
1
k (e2κ)

1
k −1

)
i ∈ {2, . . . ,k}

Proposition 1 shows the main result on how the number of regions a firm operates in affects

its information acquisition. Given κ> 0, if the number of region in which a firm operates is suffi-

ciently high, k ≥ k(κ), the firm decides to acquire only information about its overall demand, ig-

4I solve for the optimal posterior, then I choose signals that generates this posterior. In principle, there is a set
of signals that generates the same posterior. I choose signals such that rational inattention errors are independent,
following Afrouzi and Yang (2021).
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noring signals that are informative about regional relative demands. Therefore, the firm uses only

this single signal to price all regions where it operates. Given the assumption on how ideal prices

depend on the shocks, this leads to uniform pricing. If the firm does not operate in many regions,

k < k(κ), then the firm acquires as many signals as number of regions in which it operates, leading

to pricing-to-market. Proposition A.1 provides closed-form solutions for optimal prices under the

optimal information structure in Proposition 1. With that, we can show how this mechanism af-

fects the within-firm, between-region relative price dispersion and the responsiveness of the firm’s

prices to shocks.

Proposition 2. (Within-Firm Between-Region Relative Price Dispersion) Given a firm in k regions,

the relative price dispersion between region’s one and ` is given by

var (pHQ
1 j −pHQ

` j ) =

0 ,k ≥ e2κ−1

2(1− ((k +1)e−2κ)1/k ) ,k < e2κ−1

where pHQ
l j is the optimal price of firm j in location l . Furthermore, the within-firm between-

region relative price dispersion is lower than when the firm sets prices under full information.

That is,

var (pHQ
1 j −pHQ

` j ) ≤ var (p¦
1 j −p¦

` j )

Finally, when k < e2κ−1

∂var (pHQ
1 j −pHQ

` j )

∂k
< 0, ∀k ≥ 2

That is, the relative price dispersion is decreasing in k.

Proposition 2 shows that when multi-region firms are rationally inattentive and solve its prob-

lem in a centralized way, its between-region relative price dispersion is lower than its full-information

counterpart. Moreover, it decreases with the number of regions in which the firm operates. When

the number of region in which the firm operates is sufficiently high, the firm acquires a single

signal and the between-region relative price dispersion becomes zero.

Proposition 3. (Firm’s Price Response to Monetary Shocks under Headquarters’ Pricing) Firm j ’s
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price response to an expansionary monetary shock is given by:

∂pHQ
l j

∂m
=


(1−e−2κ) ,k > k(κ)

1− 1

(k+1)1− 1
k (e2κ)

1
k

,k ≤ k(κ)

Furthermore, there’s k∗ < k(κ) such that

∂
(
∂pHQ

l j /∂m

)
∂k

=

≥ 0 ,k ≥ k∗

< 0 ,k < k∗

That is, a firm’s regional price response to the common shock is non-monotonic in k. This reflects

two channels: 1) Increasing k adds more signals to which firms want to pay attention to and firms

reallocate capacity from all other signals to this new signal; 2) Increasing k increases the relative

importance of the signal about the overall demand conditions.

Proposition 3 directly speaks to how monetary shocks have real effects in the economy. The

more responsive prices are to monetary shocks, the lower is monetary non-neutrality. As a re-

sult, the extent to which increasing k increases or decreases monetary non-neutrality depends on

whether k is below or above k∗5.

Proposition 4. (Firm’s Price Response to Island-Specific Markup Shocks under Headquarters’ Pric-

ing) Firm j ’s price response in island l ∈ [k] to a positive markup shock in island ` is given by:

1. When l = `,

∂pHQ
l j

∂λ`
=


(1−e−2κ) 1

k ,k ≥ e2κ−1

1− k

(k+1)1− 1
k (e2κ)

1
k

,k < e2κ−1

In this case, the price response in the island where the shock occurs is dampened compared

to the full information case.

5The non monotonicity in Proposition 3 is also present in Pasten and Schoenle (2016) in a setting where signal
loadings are exogenous and are signals about the fundamental shocks plus noise. In their setting, a firm in k regions
receives k +1 signals: one signal about the aggregate shock, and k signals about regional shocks. Each signal is of the
form of true value plus noise.
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2. When l 6= `,

∂pHQ
l j

∂λ`
=


(1−e−2κ) 1

k ,k ≥ e2κ−1

1

(k+1)1− 1
k (e2κ)

1
k

,k < e2κ−1

In this case, markup shocks in island ` spill over to other islands served by the firm. Under

full information, prices in islands not directly affected by the markup shock do not respond.

Proposition 4 shows how rational inattention can generate a new channel for propagating re-

gional shocks across space through multi-region firms’ information acquisition and their network

of locations. In the extreme case, it can endogenously lead to uniform pricing at the firm level, even

when they can choose different prices for each location. Even when firms do not adopt uniform

pricing, the mechanism still generates regional spillovers of local shocks.

Now, I move to the case in which decisions are made at the regional division level to explore

how a firm’s organization structure affect information acquisition and pricing. The following re-

sults will show that when information acquisition is costly, it is important to consider how deci-

sions are made within a firm.

Optimal Information Allocation When Decisions Are at the Regional Division Level. In the pre-

vious analysis, the firm was assumed to solve the information acquisition and pricing problems

centrally at the headquarters level. In this subsection, I shift the focus to a decentralized approach,

where firm j solves the problems for each region individually and independently. Each regional

division l operates under a capacity constraint that represents a fraction of the firm’s total capac-

ity and seeks to minimize its own region’s profit loss. Thus, the attention allocation problem for

regional division l of firm j can be formulated as follows

max
Sl j 0⊂S

E
[

max
pl j :S0

l j→R
E
[− B

2
(pl j −p¦

l j )2|S0
l j

]]
(9)

s.t. I (S0
l j ;~x|S−1

l j ) ≤ κl (10)

S0
l j = Sl j 0 ∪S−1

l j (11)

S−1
l j given (12)

where signals are now indexed by l , reflecting the fact that each region chooses a signal structure.

Furthermore, each region chooses only its island prices. Therefore, the pricing function is a map
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from signals to R. We can write the linear-quadratic gaussian problem associated with it.

max
Σl ,0

−1

2
tr (Σl ,0

˜̃Ωl ) (13)

s.t.
1

2
ln

( |Σl ,−1|
|Σl ,0|

)
≤ κl (14)

Σl ,−1 −Σl ,0 º 0 (15)

0 ≺Σl ,−1 ¹∞ (16)

where I omit the index j . All objects are now indexed by l , as each l solves a different problem.

Importantly, ˜̃Ωl ≡ (e1 +el+1)B(e1 +el+1)′ ∈R(n+1)×(n+1) depends on l .

Assumption 2. Σl ,−1 = I

Assumption 2 states that the regional division l has the same prior uncertainty regarding any

shocks.

Assumption 3. Assume that for a firm that is in k islands, the firm divides its capacity across its

regions such that
∑

l∈[k]κl = κ, κl ≥ 0.

Proposition 5. (Optimal Signal Structure under Regional Division Pricing) Under Assumption 2

and Assumption 3, the solution to the problem in Equation (13)-Equation (16) is such the firm

acquires one signal about its own demand:

sRD
l = 1p

2
p¦

l︸︷︷︸
l ’s own

ideal price

+νRD
l , νRD

l ∼N

(
0,

1

e2κl −1

)
(17)

There is a clear distinguishing feature of signal sRD
l in Proposition 5 and the signal about overall

demand sHQ
1 in Proposition 1. While sHQ

1 depends on all location-specific shocks, sRD
l depends

only on the location’s l shock. As a result, when firms set prices at the regional division level, there

is no regional spillovers of island-specific shocks. When firms set prices at the headquarters level,

island-specific shocks spill over across regions served by the firm.

Proposition 6. (Firm’s Price Response to Monetary Shocks under Regional Division Pricing) Firm

j ’s price response in region l to an expansionary monetary shock is given by:

∂pRD
l j

∂m
= (1−e−2κl )

If we further assume that κl = κ
k , that is, κ is divided equally across the regions where the firm in k
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islands operates

∂
(
∂pRD

l j /∂m

)
∂k

< 0

When κl = κ
k , we can go further and show that when the firm solves each region’s problem

in a decentralized way, its price response to monetary shocks in every region where it operates is

dampened compared to the pricing in a centralized way. With that we can establish Corollary 1.

Corollary 1. Consider the environment in Section 2.1 and problems in Equation (5)-Equation (8)

and Equation (13)-Equation (16). Consider a firm in k islands. Assume that κl = κ/k. Then, as

established in Propositions 3 and 6, we have that a firm’s price in any given island l ∈ [k] responds

more to monetary shocks under headquarters pricing as it does under regional division pricing.

Corollary 1 shows a key result to understand how monetary shocks affects the real economy

under headquarters and regional division pricing. A firm’s price respond more to monetary shocks

under headquarter pricing than under regional division pricing. As a result, monetary shocks will

have lower real effects on the economy – that is, monetary non-neutrality decreases. Under head-

quarters decision-making, the firm allocates its capacity across multiple signals, placing greater

weight on the signal about overall demand. In contrast, under regional division decision-making,

the firm concentrates its capacity on a single signal, but this capacity represents only a fraction of

what is available when decisions are made at the headquarters.

Proposition 7. (Firm’s Price Response to Island-Specific Shocks under Regional Division Pricing)

Firm j ’s price response in island l ∈ [k] to a positive markup shock in island ` ∈ [k] is given by

∂pRD
l

∂λ`
=

(1−e−2κl ) ,`= l

0 ,` 6= l

and markup shocks in island ` do not spill over to other islands served by the firm.

When decision-making occurs at the regional division level, the price in a given region l ∈ [k]

does not respond to region-specific markup shocks in other regions where the firm operates. This

is because regional divisions focus solely on their own region’s profit losses and therefore acquire

signals about their own region’s demand. In contrast, under headquarters-level decision-making,

a markup shock in one region prompts the firm to adjust its prices across other regions, as the firm

relies on noisy signals that prevent it from fully identifying the source of the shock. With that, we

can establish Corollary 2.
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Corollary 2. Consider the environment in Section 2.1 and problems in Equation (5)-Equation (8)

and Equation (13)-Equation (16). Then, as established in Propositions 4 and 7, when firms set

prices at the headquarters level, island-specific markup shocks in regions where the firm operates

spill over to firm’s prices in other regions, while when firms set prices at the regional division level,

there are no spillovers.

Although it may be challenging to directly observe how firms make decisions, Corollary 2 offers

a testable implication for determining whether firms are making decisions at the regional or head-

quarters level when information acquisition is costly. If decisions are made at the regional division

level, we should see no spillovers of local shocks across the firm’s network of locations. Conversely,

if decisions are centralized at the headquarters, we should6.

Extensions. While I derive Proposition 1 under the assumption of a fixed capacity κ that does not

vary with k, Proposition A.2 shows similar result under conditions in which κ increases with k. In

Proposition A.3, I consider the case in which the firm has a different prior regarding the aggregate

shock and the regional shocks. In this case, the threshold at which firms start acquiring only one

signal depends also on the relative prior variances regarding aggregate and regional shocks.

Discussion on how multi-region firms set prices. In standard multi-region models with monop-

olistic competitive firms, ‘firms’ and ‘establishments’ are often used interchangeably. This is be-

cause the optimal pricing decision for a firm with multiple establishments is equivalent to solving

the pricing problem for each establishment individually. However, in my framework, this equiv-

alence doesn’t hold. It is important to distinguish whether pricing decisions are made at the firm

level (in my model, the headquarters) or at the establishment level (in my model, the regional

division).

In the dynamic general equilibrium model, I assume that information acquisition and price

setting decisions are made at the headquarters level. Studies that seek to understand multi-store

retailers’ pricing decisions suggest this is the case for some of them. For instance, Levy, Bergen,

Dutta, and Venable (1997), in a study seeking to measure menu costs for supermarket chains, men-

tions that “In the supermarket chains we study, prices are generally set at corporate headquarters in

a weekly meeting where the manager in charge of setting prices looks at a variety of information

(...)”. Adams and Williams (2019), studying pricing of home-improvement retailers, mentions that

6Garcia-Lembergman (2020) shows evidence that can be consistent with this. In contrast to Garcia-Lembergman
(2020), the spillover is present even when firms are not literally setting uniform prices.
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“Product category managers working at corporate headquarters–not local managers–make pricing

and assortment decisions”.

3 Dynamic General Equilibrium Model

Building on the insights from the static framework in Section 2, this section develops a dynamic

general equilibrium model to quantify the effects of rationally inattentive, multi-regional firms on

the propagation of both monetary and region-specific shocks.

3.1 Environment

Time is discrete, t = 0,1, . . . . The economy is composed by a discrete number of regions n ∈ N,

l ∈ {1,2, . . . ,n} integrated in a monetary and fiscal union. Each region is characterized by a rep-

resentative household, with population ζl ∈ (0,1),∀l ∈ [n],
∑

l ζl = 1. There is a measure one of

monopolistically competitive retailers in the economy, and 2n −1 types of retailers. Each type of

retailer is present in a subset of the regions, where 2n −1 is the total number of possible combina-

tions of regions in which a firm can be present7. Let Jl be the set of firms present in l . Assume

there is a measure ϕh ∈ [0,1) of each type of firm, where
∑

h ϕh = 1,h = 1,2, . . . ,2n − 1, and there

exists ι(h) : {h ∈N|1 ≤ h ≤ 2n −1} → {1,0}n\(0, . . . ,0). ι(h) is a function that maps indices into a firm

type. The retailers use labor to produce and supply the good to the household of the region where

they are present. Households save using a riskless bond. There is a single competitive labor market

in this economy.

7A firm type can be summarized by a vector {0,1}n . There are 2n − 1 possible combinations of types, where −1
excludes {0, . . . ,0} ∈ Rn . Within a region, the measure of firms present in it is given by 2n−1. To see why, let n = 4, and
take for instance a firm in region 1: {1, a,b,c}, where a,b,c ∈ {0,1}. There are 24−1 possible combinations left for a,b,c.
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3.1.1 Household

The representative household in region l ∈ [n] demands a composite good and supply labor in a

competitive market. The household solves

max
{Cl t ,Ll t }t≥0

E
f
0

[ ∞∑
t=0

βt ( log(Cl t )−Ll t
)]

(18)

s.t.
∫ 1

0
Pl j tCl j t d j +Bl t ≤Wt Ll t + (1+ it−1)Bl t−1 +Profitsl t −Tl t (19)

Cl t =
(∫ 1

0
θ

Λl t −1
Λl t

l j C
1
Λl t

l j t d j
)Λl t

(20)

where E f
t [.] is the full information rational expectations operator at t . Cl t is the aggregate con-

sumption of household l at t , Ll t is her labor supply, Profitsl t are the profits rebated to her, and

Tl t lump-sum transfers used to eliminate steady-state inefficiencies of monopolistic competition.

The household chooses how much to spend in each retailer and how much to save in bonds sub-

ject to its total resources, given by its labor income, savings from previous period, and profits and

lump-sum transfers. Note that the consumption aggregator is a CES aggregator, with θl j being

the taste shifter of household l for retailer j , and it is assumed that this taste shifter is positive if

j is present in l and zero otherwise. Furthermore, Λl t is the mark-up implied by the elasticity of

substitution across varieties, which is allowed to vary over time and is specific to region l .

3.1.2 Retailers

Let L j be the set of locations l ∈ [n] in which retailer j ∈ [0,1] is present. Assume that each re-

tailer produces its output using a linear technology in labor, given by Yl j t = Ll j t , where Ll j t is the

amount of labor used by j in l to produce Yl j t . Furthermore, given its demand in each location in

which it is present, l ∈ L j , it chooses the price in each location in order to maximize its expected

discounted sum of profits, where the per-period profit when it sets price (Pl j t )l∈L j is given by

Π j t =
∑

l∈L j

(
Pl j t Y s

l j t −Wt Ll j t
)
, s.t. Y s

l j t = ζlCl j t

recalling that Cl j t is the demand per capita of region l for retailer j . Therefore, to get the region l ’s

total demand for retailer j , we need to multiply by its population.

Full information pricing. When the monopolistic competitive firm j is not subject to frictions of

any kind, maximizing the joint profit in all locations is the same as maximizing the profit in each
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location individually. That is, for each l ∈ [L j ], the retailer j sets its price equal to its ideal price,

P¦
l j t :

P¦
l j t ≡ argmaxPl j t

(
Pl j t Y s

l j t −Wt Ll j t
)
, s.t. Y s

l j t = ζlCl j t (21)

where the ideal price P¦
l j t is defined by Equation (21) as the price that firm j would set in region l

and time t in the absence of any frictions.

Rational inattention. Monopolistically competitive firms are rationally inattentive. That is, they

do not perfectly observe the fundamental shocks, and must optimally choose prices conditional

on signals that are endogenously chosen by them, subject to a capacity constraint. That is, given a

capacity κ j , the amount of information the firm can acquire is given by

I(S t
j ;~x t |S t−1

j ) ≤ κ j

where I(S t
j ;~x t |S t−1

j ) is the conditional Shannon mutual information between the history of signals

S t
j and the history of the fundamental shocks.

After firms make their information choices, shocks and signals are drawn, and each firm ob-

serves the realization of its signals. Then, firms choose their prices conditional on their informa-

tion sets. Finally, demand is realized and firms produce to meet their demand.

More specifically, given a capacity κ j , a firm chooses a set of signals to observe, S j t ⊂ St , and

a pricing function that maps its information set to their optimal actions, ~P j t : S t
j → R|L j |, where

S t
j = {S jτ}t

τ=−1 is the firm’s information set at time t and |L j | is the number of regions in which

firm j is present. The rationally inattentive retailer solves:

max
{S j ,t⊂St ,{Pl j t (St

j )}l∈L j
}t≥0

E
[ ∞∑

t=0
βt W −1

t︸ ︷︷ ︸
discount

factor

×
{ ∑

l∈L j

((
1−τl

)
Pl j t Y s

l j t︸ ︷︷ ︸
revenue

in l

− Wt Ll j t︸ ︷︷ ︸
production

cost in l

)}]
(22)

s.t. Y s
l j t = ζlCl j t , l ∈L j (demand) (23)

I(S t
j ;~x t |S t−1

j ) ≤ κ j (info. processing constraint) (24)

S t
j = S t−1

j ∪S j t , S−1
j given (evolution of information set) (25)

where τl is a constant tax to firms in location l that eliminates steady-state inefficiencies coming

from monopolistic competition. From now on, I assume that κ j = κ,∀ j ∈ [0,1]. That is, all firms

have the same capacity. S−1
j is an initial signal. Finally, S t

j satisfies the no-forgetting condition,
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which states that firms do not forget information over time. This will put an upper bound on the

amount of uncertainty the firm can choose8.

Nominal Aggregate GDP and Aggregate Prices. Since there is no investment, the aggregate real

GDP in each region l is equal to consumption Yl t = Cl t . Let the aggregate real GDP Ct and the

aggregate prices Pt be defined, respectively, as

Ct ≡
∏

l∈[n]
C ζl

l t and Pt ≡
∏

l∈[n]
Pζl

l t

Therefore, the nominal aggregate GDP Mt is given by

Mt ≡ PtCt =
∏

l∈[n]
(Pl tCl t )ζl

3.1.3 Monetary and fiscal policy

I assume there is a single monetary authority that controls the path of nominal aggregate GDP

{Mt }t≥0. I also assume a single fiscal authority that levies taxes or subsidizes monopolistic com-

petitive firms’ sales in each location l ∈ [n] at a constant rate τl , lump-sum transferred back to

households. The government budget constraint is given by

∑
l∈[n]

∫
j∈Jl

τl t Pl j t Y s
l j t d j = ∑

l∈[n]
Tl t

The monetary authority models the nominal GDP as an random walk process:

log(Mt ) = log(Mt−1)+σuut , ut ∼ N (0,1) (26)

3.1.4 Fundamental shocks

The economy is subject to n +1 fundamental shocks: the nominal GDP shock from Equation (26),

and n regional markup shocks
(
log(Λl t )

)
l∈[n]. Besides Equation (26), we have

log(Λl t ) = log(Λl )+σεl εl t , εl t ∼ N (0,1), l ∈ [n] (27)

Note that while I assume that the nominal GDP process follows a random walk, the processes for

the regional markup shocks follow white noise processes.

8See Afrouzi and Yang (2021) for details.
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Equilibrium Definition. An equilibrium consists of allocations for households and firms, mon-

etary and fiscal policies, and prices such that: (1) given prices and policies, the allocations are

optimal for households and firms, and (2) markets clear. A detailed definition is in Appendix C.

3.2 Solution Method

I consider a log-linearization of this economy around an efficient steady state, with a second-order

approximation of the monopolistic competitive firm’s profit loss function around this efficient

steady state9. The derivations are in Appendix F. Going forward, small letters denote log devia-

tions of the corresponding variables from their steady-state values10.

Monopolistic competitive retailer’s marginal cost. A firm’s marginal cost in location l ∈L j is

mcl t = wt

Ideal prices. A firm’s ideal price in location l ∈L j is

p¦
l j t =λl t +mct (28)

Even though I index p¦
l j t by j , note that this does not depend on j . This means that I abstract from

chain-specific preference shocks or chain-specific technology shocks. Note that Equation (28) is

the same as in Section 2.1.

Wages. Using the the first order conditions of the household in each location l ∈ [n] and the mon-

etary rule, the nominal wage in the economy is

wt = mt

Regional aggregate price and regional real GDP. The aggregate price in region l ∈ [n] is

pl t =
∫ 1

0
θl j pl j t d j , l ∈ [n]

The regional GDP, yl t , is equal to aggregate consumption, as there is no investment. Under fully

elastic labor supply, this is given by the difference between the wage in location l and aggregate

9For a discussion on the use of second-order approximations of the objective function, see Afrouzi and Yang (2021).
10i.e., xt ≡ log X t − log X
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prices in region l , pl t :

cl t = wt −pl t

Note that under the assumptions I made regarding household’s preferences, single labor market,

regional nominal GDP is the same for all regions. However, regional real GDP might still be differ-

ent, as each region has a different set of retailers, with distinct incentives to acquire information.

Aggregate price, aggregate real GDP, and aggregate nominal GDP. The aggregate price, the aggre-

gate real GDP, and the aggregate nominal GDP in the economy are given, respectively, by

pt =
∑

l∈[n]
ζl pl t , ct =

∑
l∈[n]

ζl cl t and mt ≡ pt + ct

Fundamental shocks. Let the vector of fundamental shocks be denoted by~xt ≡ (mt ,λ1t , . . . ,λnt )′ ∈
Rn+1. Then, its state-space representation is given by

~xt = A~xt−1 +Q~ut , ~ut ⊥~xt−1, ~ut ∼N (0,I)

where ~ut = (ut ,ε1t , . . . ,εnt )′ ∈Rn+1.

3.2.1 An approximate problem

I use a second-order approximation to the firm’s problem to solve its information acquisition prob-

lem. Before turning to the rational inattention problem, it is useful to state the optimal pricing

given a signal structure.

Imperfect information. Given a history of signals S t
j , a firm j ’s optimal price in location l ∈L j is

p∗
l j t = E

[
p¦

l j t

∣∣S t
j

]
That is, the optimal price under imperfect information is the expected ideal price given the infor-

mation set S t
j .

Rational inattention. After performing a second-order approximation of the firm’s profit function,
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its approximate profit maximization problem becomes

max
{S j t ,(pl j t (St

j ))l∈L j
}t≥0

E
[ ∞∑

t=0
βt{− ∑

l∈L j

1
2 Bl j (pl j t (S t

j )−p¦
l j t )2︸ ︷︷ ︸

loss from mispricing in l

}∣∣S−1
j

]
(29)

s.t. I (S t
j ; {~xτ}τ≤t |S t−1

j ) ≤ κ j (info. processing constraint) (30)

S t
j = S j t ∪S t−1

j , S−1
j given (evolution of information set) (31)

where p¦
l j t =λl t +mt , l ∈L j is the price that firm j would set in location l at time t in the absence

of any friction. Bl j is the curvature parameter of the profit function around the optimal price in a

given location l for firm j . Considering the assumptions regarding the demand function,

Bl j = ζl︸︷︷︸
Population size

in region l

× θl j︸︷︷︸
Taste shifter in

region l for firm j

× Λl

Λl −1

whereΛl is the steady state markup in region l . Firm j ’s sales in region l ∈L j in the efficient steady

state is

salesl j =Λlζlθl j

where I consider a steady state with M = 1, and I normalize
∫ 1

0 θl j d j = 1,∀l ∈ [n]. As a result, we

can rewrite Bl j as

Bl j =
∑

l∈L j

Λlζlθl j ×
Λlζlθl j∑

l∈L j
Λlζlθl j

× 1

Λl −1
= sales j × sales sharel j ×

1

Λl −1

where sales sharel j is region’s l share of firm’s j total sales. Therefore, the profit losses arising from

a given mistake in pricing in region l is (1) increasing in firm’s size, measured by its total sales; (2)

increasing in region’s l share of firm j total sales; (3) increasing in region’s l elasticity of demand

(which implies in lowerΛl ).

In what follows, I assume that the firm is constrained to choose gaussian signals so that we can

write the problem in Equation (29) to Equation (31) as a linear-quadratic gaussian problem where

we choose the optimal posterior. Furthermore, I solve for the steady-state information structure

following Afrouzi and Yang (2021), where posterior, prior, benefit matrix, and shadow value of ca-

pacity constraint are time-invariant (Σ̄−1( j ), Σ̄( j ), ¯Omeg a( j ),ω̄( j )).
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3.3 Calibration

To understand the macroeconomic implications of rationally inattentive multi-region firms, I cal-

ibrate the model using U.S. data as of 2012. The model is at a monthly frequency. I consider an

economy with 12 regions11, so n = 12. Each region represents one of the Federal Reserve districts

and its boundaries and populations in 2012 are shown in Figure 1. I calibrate the regional popula-

tion shares, {ζl }l∈{1,...,12}, using the BEA population data.

Figure 1: 2012 Resident Population by Federal Reserve districts (Thousands of Persons). Source:
St. Louis FRED.

To calibrate the standard deviation of the aggregate shock, σu , I interpolate the U.S. nominal

GDP using a spline routine to get nominal GDP monthly growth rates and use its standard devi-

ation as σu . To calibrate the standard deviation of region specific markup shocks, {σl }l∈{1,...,12}, I

calculate regional employment levels using the QCEW, seasonally adjust them using X13, and then

11Ideally, one would like to have the most disaggregated geographic units as possible. However, computational
issues start arising. First, recall that the number of types of firms is given by 2n −1. Furthermore, with n +1 shocks,
the prior variance-covariance matrix is a state variable, with n(n+1)/2 different variables, and the posterior variance-
covariance matrix, which is a choice variable for the firm, also has n(n+1)/2 different variables. Hence, the number
of potential problems to solve increase exponentially and the dynamic rational inattention problem becomes more
complex.



25

use the regional standard deviation of the seasonally adjusted monthly employment growth rate

as σl , l ∈ {1, . . . ,12}. Figure 2 shows the calibrated values for each one of these standard deviations.

Appendices I.2 and I.3 provide a detailed description of their construction.

Figure 2: Calibrated values for standard deviation of shocks
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On the demand side of the economy, we need to calibrate the discount factor, β, the regional

steady state markups, {Λl }l=1,...,12, and regional taste shifters for each retailer, {θl j }l∈{1,...,12}, j∈[0,1]. I

set β = ( 1
1+0.02 )1/12 which is how β is related to nominal interest rates in the steady state, assumed

to be 2% annual. I setΛl = 4.5/(4.5−1),∀l ∈ {1, . . . ,12}, where 4.5 is the elasticity of substitution across

retailers within a region and taken from Hottman (2021), which estimates the elasticity of substi-

tution across stores within a county using the U.S. NielsenIQ data.

Finally, I use the U.S. NielsenIQ scanner data to calibrate the share of each type of firm {ϕh}h 7→ι(h),

{θl j }l∈{1,...,12}, j∈[0,1], and κ. The U.S. NielsenIQ scanner data contain weekly scanner prices and

quantities for different products (UPCs) for retail stores in the United States. I work with a subset
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of product categories, products, and stores of the data for the period of 2006 to 2019. Broadly, I fo-

cus on food stores in the United States, product categories that compose the the BLS U.S. CPI food

at home, products that are widely available in stores within each year, and retailers that are present

in at least 10 out of the 14 years of data. A detailed description of the data and the data cleaning

process are in Appendix I.1. Then, {ϕh}h 7→ι(h) is calibrated as the number of firms that are type

ι divided by the total number of firms used in the empirical analysis in 2012. {θl j }l∈{1,...,12}, j∈[0,1]

are chosen to match the consumption expenditure share for each type of firm in each one of the

regions, where I assume that
∫ 1

0 θl j d j = 1,∀l ∈ [n]. To go from consumption expenditure share of

types of firms to individual firms j , I use the calibrated values of {ϕh}h 7→ι(h). A detailed description

of the calibration of {θl j }l∈{1,...,12}, j∈[0,1] is in Appendix I.4.

Parameter Description Value Explanation

n Number of regions 12 Federal Reserve Districts

{ζl }l∈[n] Population in l 2012 Census estimate

σu Std. of monetary shock σ(∆ logNGDPt ), 1990:01-2019:10

{σl }l∈[n] Std. of regional shocks σ(∆ logEmploymentl t ), QCEW, 1990:01-2019:10

β Discount factor ( 1
1+0.02 )1/12 β= ( 1

1+i )1/12

{Λl }l∈[n] Regional steady state markup 4.5
4.5−1 Hottman (2021)

{ϕh}h 7→ι(h) Share of each type of firm 2012 U.S. NielsenIQ Data

{θl j }l∈[n], j∈{0,1} Firms’ regional taste shifters 2012 U.S. NielsenIQ Data

Table 1: Externally calibrated parameters.

The model has one internally calibrated parameter, the fixed capacity κ. I calibrate it using the

following model moment to match its data counterpart:

m(κ) = 1

Nt +N j

∑
t

∑
j

(var j t (pl j t )

vart (pl j t )

)

where j is a firm, l is a location, t is a time period. var j t (p j t ) is the within-chain, within-period

variance of prices across locations. That is, var j t (pl j t ) = 1
|L j |

∑
l (pl j t − 1

|L j |
∑

l pl j t )2, where |L j | is

the number of regions where j operates. vart (p j t ) is the within-period variance of prices across

chains and locations. That is, vart (pl j t ) = 1∑
j |L j |

∑
j
∑

l (pl j t − 1∑
j |L j |

∑
j
∑

l pl j t )2. I choose κ to
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solve the following minimization problem:

min
κ

g (κ) ≡ (m(κ)−mdata)2

where mdata is the data moment. A detailed description of how I calculate mdata is in Appendix I.5.

Figure 3 shows how the model moment and the loss function vary as I increaseκ. The top figure

shows that the moment increases monotonically with κ and it reflects the fact that regardless of

firm type, as you increase κ the firm becomes less capacity constrained. As a result, its prices

across regions become closer to their ideal flexible counterparts, increasing the between-region,

within-chain price variance.

Figure 3: Model moment and loss function
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Notes: Top: This figure plots the moment, (m(κ)), as you vary the capacity κ. It shows that m(κ) is a strictly increasing
function ofκ forκ ∈ [0.02,10]. Bottom: This figure plots the loss function (m(κ)−mdata)2 as you varyκ. Given that m(κ)
is strictly increasing in [0.02,10], there is a unique κ that minimizes (m(κ)−mdata)2, for κ ∈ [0.02,10]. mdata = 0.3325.

3.4 Macroeconomic Implications

Having calibrated the model, I assess the quantitative implications of firms organization structure

for decision-making for: (1) monetary non-neutrality; (2) propagation of regional markup shocks.
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I compare the calibrated economy where firms decides at the headquarters level with an econ-

omy where multi-region firms decisions are made at the regional division level. In this case, the

capacity is distributed according to each one of the region’s sales share. That is, if a firm has ca-

pacity κ and total sales sales j = ∑
l salesl j , each region has κl j = salesl j

sales j
κ. Under regional division

decision-making, an expansionary monetary shock generates around six times larger monetary

non-neutrality – as measured by the cumulative impulse response of aggregate GDP, than under

headquarters decision-making. For the propagation of regional markup shocks, the quantitative

implications depend on which region is shocked. Under regional division decision-making the

aggregate GDP after a positive regional markup shock declines less compared to when decisions

are made at the headquarters level. More importantly, under headquarters level decision-making,

region-specific shocks spillover to other regions, a feature that is not present when decision-making

occurs at the regional division level.

3.4.1 Monetary Non-Neutrality

When decisions are made at headquarters, the real effects of monetary shocks on aggregate GDP

are smaller than when decisions are made at the regional division level, as shown by the cumulative

impulse response of aggregate GDP after an expansionary monetary shock.

Figure 4 illustrates that following a one standard deviation positive monetary shock, the cumu-

lative impulse response of aggregate GDP under regional division decision-making (decentralized

pricing) is six times larger than under headquarters decision-making (calibrated).

This result is linked to Corollary 1, where I show that under headquarters decision-making,

firms’ prices are more responsive to monetary shocks than under regional division decision-making.

The introduction of persistent monetary shocks and positive discounting adds a dynamic com-

ponent to the information acquisition process. Acquiring information today reduces future un-

certainty, though the value is discounted over time. This force affects the total monetary non-

neutrality under each one of the organization structures. However, for the relative monetary non-

neutrality, the intuition is similar to the static case.

When decisions are made at headquarters, firms spread their attention across multiple sig-

nals. In contrast, under regional division decision-making, each division focuses on a single sig-

nal about its own demand but does so using only a fraction of the firm’s total capacity. In the

quantitative model, this leads to a dampened price response to aggregate shocks under regional

division decision-making, thereby increasing monetary non-neutrality compared to headquarters
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decision-making.

Figure 4: Impulse response functions to a monetary policy shock
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard deviation
positive monetary shock. Cumulative impulse responses (CIR) ratio denotes the ratio of cumulative impulse responses
of the economy under regional division decision-making to the calibrated economy. The y-axis is in standard devia-
tions of the shock.

3.4.2 Cross-Sectional Spillovers of Region-Specific Shocks

The calibrated economy amplifies the effects of regional markup shocks compared to an economy

where firms’ decision-making occurs at the regional division level. Importantly, when decisions

are made at headquarters, regional markup shocks generate regional spillovers to other regions

through firms’ network of locations. In contrast, under region division level decision-making,

there is no spillover.

Table 2 shows the ratio between cumulative impulse response of aggregate GDP under regional

division decision-making relative to headquarters decision-making after a one standard deviation

positive regional shock to the Fed district specified in each row. Regardless of the region that re-

ceives the shock, the contraction of aggregate GDP under regional division decision-making is

lower than under headquarters decision-making. However, there’s some heterogeneity in how
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large is the difference.

To illustrate how organizational structure affects the propagation of region-specific shocks,

Figure 6 shows the spillover effects of a markup shock in the Atlanta Fed district across other dis-

tricts under both headquarters and regional-division decision-making. First, this shock is contrac-

tionary for Atlanta Fed district under both headquarters and regional division decision-making, as

expected. However, under headquarters decision-making, this shock spills over to other districts

through firms’ network of locations, as headquarters optimally choose noisy signals that don’t al-

low them to perfectly identify the source of the shock. This spillover is quantitative relevant for

some regions, as Cleveland and Dallas, whose GDP contractions are more than 10% of Atlanta’s

GDP contraction. This spillover is absent under regional division decision-making, as each re-

gional division acquires a signle signal about its own demand conditions. Finally, we see regions

(Boston and New York) for which there is no response, regardless of the organization structure.

The reason for that is that there are no firms in the data that are present in Atlanta and in any of

these regions.

Table 2: Aggregate Effects of Regional Shocks

Fed District CIR Ratio

Boston 0.9758
New York 0.9976
Philadelphia 0.9142
Cleveland 0.9691
Richmond 0.9274
Atlanta 0.9680
Chicago 0.9496
St. Louis 0.9015
Minneapolis 0.9722
Kansas City 0.9332
Dallas 0.9741
San Francisco 0.9952

Notes: This table shows the cumulative impulse response of aggregate GDP ratio between the economy under regional
division decision-making and under headquarters decision-making. The decentralized pricing economy is an econ-
omy where each region of the multi-region firms solves its own problem. Mean: 0.956. Median: 0.968.

Figures J.1 to J.22 show the aggregate effects and the regional spillovers of region-specific shocks

for shocks coming from each one of the other districts.
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Figure 5: Impulse response functions to a markup shock in the Atlanta Fed district
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Notes: This figure plots impulse response functions for regional inflation and regional GDP to a standard deviation
positive monetary shock. The y-axis is in standard deviations of the shock.

3.5 Model Validation

In this section, I present evidence supporting my theoretical framework. Building on Proposi-

tion 2, which shows that rational inattention reduces within-firm, between-region price disper-

sion compared to the full information case, I use the variation between regions and retailers in the

NielsenIQ scanner data. Specifically, I show that for a given product, the relative price dispersion

between regions is smaller when comparing prices within the same retail chain, as opposed to

comparing prices across different chains. Then, I simulate data within my model and show that

the model can qualitatively reproduce this result.

3.5.1 Between-County Relative Price Dispersion and Within-Chain Effect

Constructing the Sample. To compare prices of products between counties and assess how firms

affect its dispersion, while accounting for the distance between counties, the relative prices dis-

persion must have both between-county and between-chain variation. I work with a subset of
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Figure 6: Impulse response functions to a markup shock in the Atlanta Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard deviation
positive monetary shock. CIR Ratio denotes the ratio of cumulative impulse response of aggregate GDP when deci-
sions are made at the regional division relative to when decisions are made at headquarters. The y-axis is in standard
deviations of the shock.

products that are widely available across stores within a year, and the prices I look at are related

to the idea of reference prices (Eichenbaum, Jaimovich, and Rebelo, 2011). That is, the most often

quoted price across all stores for a chain within a period of time. I consider a month. Finally, given

the size of the data, and the fact that it is computationally infeasible to compare all possible pairs

of prices across counties and chains, I work with a random sample of the data.

First, in a given year, I consider only UPCs sold in at least 70% of store-weeks. As a result, I

consider goods that are widely available across stores, within a year. Then, given the subset of

UPCs, I use the mode of prices for each UPC-Chain-County-Month. That is, I collapse data that

are at the UPC-Store-Week level into data at UPC-Chain-County-Month level. This ensures that

the variation I look at is at the Chain-County-Month level, disregarding variation that happens at

the Store-Week level. I drop cases in which there is more than one mode. Finally, to compare prices

of UPCs across counties and chains, for each UPC, I draw a random sample of 200 pairs of ordered

pairs ((county l ,chain j ), (county l ′,chain j ′)). Then, for each pair, I calculate the relative price
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between (logPl j t −logPl ′ j ′t ) for each period, and take its standard deviation over time, σ(logPl j t −
logPl ′ j ′t ). With this, I have both between-county, between-chain variation, and between-county,

within-chain variation, while allowing to control for distance between counties. I use only pairs of

prices such that I can calculate (∆ logPl j t −∆ logPl ′ j ′t ) for at least 24 months.

Figure 7 displays the histogram of within-chain, between-county relative price dispersion, ie,

σ(logPl j t − logPl ′ j t ), l 6= l ′, and the between-chain, within-county relative price dispersion, ie,

σ(logPl j t − logPl j ′t ), j 6= j ′. As we can see, the within-chain, between-county relative price disper-

sion seems to be in general smaller than between-chain, within-county relative price dispersion.

Figure J.24 plots the histogram considering only pairs of prices between counties that are at least

150 miles away for the within-firm, between-county relative price dispersion, displaying the same

qualitative results.

Figure 7: Histogram of relative price dispersion
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Notes: This figure plots the histogram of within-chain, between-county relative price dispersion and between-chain,
within-county relative price dispersion.

Regression Specification. To uncover the effect of comparing prices between counties, but within

the same retailer, while controlling for distance between the counties, I run the following cross-
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sectional gravity type regression pooled across all UPCs, which are indexed by i :

σ(logP i
l j t − logP i

l ′ j ′t ) =β0 logDl ,l ′ +β11{ j = j ′}+β2 logDl ,l ′1{ j = j ′}+β31{Same Fed District}

+FEl×m(i) +FEl ′×m(i) +εi
((l , j ),(l ′, j ′)) (32)

where Dl ,l ′ is the distance between counties l and l ′12, 1{ j = j ′} is a dummy that takes the value of

one, if j = j ′ and zero otherwise, and 1{Same Fed District} is a dummy that takes the value of one if

l and l ′ belong to the same Federal Reserve District. FEl×m(i) is a fixed effect for the county l and the

module for good i . The coefficient of interest is β1 and captures how comparing prices between

counties for the same chain affects the relative price dispersion, after controlling for distance be-

tween counties. The coefficient β0 captures how distance affects the relative price dispersion for a

given good and it proxies shipping costs, differences in preferences that are function of distance,

etc.

Results. Column (6) of Table 3 reports the results from estimating Equation (32) and shows that

the relative price dispersion between counties for the same good decreases when we compare

prices within chain, even after controlling for the distance between pairs of counties. It also shows

that even when we compare prices within chain, relative price dispersion increases with the dis-

tance between counties. This evidence corroborates the findings from DellaVigna and Gentzkow

(2019) that documents that chains display almost uniform prices across markets. At the same time,

it is also consistent with the idea that between-county relative price dispersion increases with dis-

tance, as in Engel and Rogers (1996). This evidence is consistent with firm-level constraints that

lower the variability of relative prices between regions.

12If l = l ′, I assume Dl ,l ′ = 1
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Table 3: Between-County and Between-Chain Relative Price Dispersion

(1) (2) (3) (4) (5) (6)

log(distance) 0.011∗∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000)

1(Same Chain) -0.077∗∗∗ -0.074∗∗∗ -0.074∗∗∗ -0.179∗∗∗

(0.002) (0.002) (0.002) (0.004)

1(Same District) -0.022∗∗∗ -0.002∗∗∗ -0.001∗∗

(0.001) (0.000) (0.000)

log(distance)1(Same Chain) 0.019∗∗∗

(0.001)

N. of obs. 724,893 724,893 724,893 724,893 724,893 724,893

R-squared .013494 .0699358 .0096799 .071097 .0711378 .074855

Adjusted R-squared .0134912 .0699332 .0096772 .0710932 .0711326 .0748486

County FE Yes Yes Yes Yes Yes Yes

Chain FE No No No No No No

Notes: Dependent variable: σ(log(P i
l j t/P i

l ′ j ′ t
)). Standard errors clustered at module. 1(Same Chain) = 1 if j = j ′.

1(Same District) = 1 if l and l ′ belong to the same Federal Reserve district.

Since the results in Table 3 rely on a specific random sample of price pairs, I generate 50 ran-

dom samples and rerun the regression from Column (5) of Equation (32) for each sample. Fig-

ures J.25 to J.27 illustrate the distribution of coefficients across these draws. Based on this analysis,

I conclude that the point estimates in Table 3 are not driven by the specific random sample.

Model counterpart. With the calibrated model, I simulate a panel of firms’ prices, draw a random

sample of pairs of prices and then run the regression in column (5) of Table 3. While column (5)

also controls for distance, in my model regions are completely segmented. Therefore, I do not need

to control for distance, so I run the regression only against a dummy for same chain and a dummy

for same district. Column (3) Table 4 shows that both same district and same chain dummies

have negative effect on the relative price dispersion between regions, a result that is qualitatively

consistent with Table 3.
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Table 4: Model: Between-Region and Between-Chain Relative Price Dispersion

(1) (2) (3)

1(Same Region) -0.003∗∗∗ -0.003∗∗∗

(0.000) (0.000)

1(Same Chain) -0.002∗∗∗ -0.001∗∗∗

(0.000) (0.000)

N. of obs. 1000000 1000000 1000000

R-squared .5948288 .0013071 .5954165

Adjusted R-squared .594819 .0012832 .5954064

Region FE Yes Yes Yes

Notes: Dependent variable: σ(log(P i
l j t/P i

l ′ j ′ t
)). Standard errors clustered at module. 1(Same Chain) = 1 if j = j ′.

1(Same District) = 1 if l and l ′ belong to the same Federal Reserve district.

4 Conclusion

This paper develops a model to study how a firm’s geographic dispersion affects and its organiza-

tion structure affect information acquisition when this is costly. For firms operating in multiple

regions under rational inattention, the level at which decisions are madewhether at the headquar-

ters or regional divisionsplays a crucial role in shaping how firms form expectations about aggre-

gate and region-specific shocks. The model provides a potential explanation for why firms may

display low within-firm between-location relative price dispersion documented by the literature

(DellaVigna and Gentzkow, 2019).

The framework can speak to recent trends highlighting the increased importance of national

retail chains in the U.S. economy and how organization structure shapes a firm’s price responses to

different shocks. As firms expand nationally, those making decisions at the headquarters level will

tend to focus more on overall demand conditions, resulting in stronger price response to monetary

shocks. In contrast, those making decisions at the regional division will display weaker price re-

sponses to monetary shocks, as each one of the regional divisions will have lower capacity. There-

fore, as firms become more national, it becomes increasingly important to understand whether

decisions are made at the headquarters or regional division level, as the effects of monetary pol-

icy differ significantly under these two scenarios. An assumption for this conclusion is that the

organization structure for decision-making does not vary with a firms geographic dispersion. A
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key direction for future research is to endogenize a firm’s organization structure for information

acquisition and pricing.

Furthermore, the proposed framework abstracts from other mechanisms that may drive en-

dogenous propagation of region-specific shocks to focus specifically on how costly information

acquisition alone can generate regional spillovers. It is important to assess the quantitative impor-

tance of the interaction of this new propagation mechanism with the usual ones for real business

cycles comovements within a country like the United States. Among the simplifications, this paper

assumes that monetary policy targets nominal aggregate GDP. Future research could explore the

implications of this mechanism for welfare and optimal monetary policy.
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A Additional Results and Extensions of the Static Model

In this section, I present additional results and extensions of the static model in Section 2.1 and

the problem in Section 2.2.

A.1 Rational Inattention Problem When Decisions Are at the Headquarters Level

Proposition A.1. (Optimal Prices) Let {k(κ), {si }i∈{1,...,k}} as in Proposition 1. Then, the optimal price

for a firm j is given by:

1. When k > k(κ),

~p∗
j =

(
1−e−2κ)[(m + 1

k

k∑
m=1

λk )+
√

1+ 1

k
ν1

]
1k×1 (33)

where ν1 ∼ N (0, 1
e2κ−1

) and 1k×1 = (1, . . . ,1)′. Therefore, the firm adopts a uniform pricing

response policy.

2. When k < k(κ)

~p∗
j =

(
1− e−2 κ

k

(1+k)1− 1
k

)[
m + 1

k

∑
l∈{1,...,k}

λl +
√

1+ 1

k
ν1

]
1k×1 (34)

+ 1

2

(
1−

[
(k +1)

1

e2κ

] 1
k
)
(e1 −ek )

[
(λ1 −λk )+p

2ν2

]
+

k∑
i=3

i −1

i

(
1−

[
(k +1)

1

e2κ

] 1
k
)
(− 1

i −1

i−2∑
m=1

em +ei−1 − 1

i −1
ek )

×
[
λi−1 − 1

i −1

i−1∑
m=2

λm−1 − 1

i −1
λk +

√
1+ 1

i −1
νi

]

where ν1 ∼ N

0,
1
k

[
(k+1) 1

e2κ

] 1
k

(1+ 1
k )− 1

k

[
(k+1) 1

e2κ

] 1
k

, νi ∼ N

0,
1
k

[
(k+1) 1

e2κ

] 1
k

1
k − 1

k

[
(k+1) 1

e2κ

] 1
k

 ,2 ≤ i ≤ k. Therefore, the

firm adopts a pricing-to-market pricing response policy.

The price in a given location ` is given by p∗
` j = e′

`
~p∗

j .

Proposition A.2. (Capacity Increasing in k) Let the capacity function κ(k) :R+ →R+ satisfy κ′(k) >
0,∀k > 0, and let there exist k̄ > 0 such that 1

2 log(1+ k̄) = κ(k̄), with 1
2 log(1+k) < κ(k) for k < k̄ and

1
2 log(1+k) > κ(k) for k > k̄. Then, if k ≥ k̄, firm acquires only one signal, while if k < k̄, the firm
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acquires k signals.

When the firm acquires only one signal, the signal is about the firm’s overall demand:

s1 = u′
1~x +ν1, ν1 ∼N

(
0,

1

e2κ(k) −1

)
where the vector of loadings u1 = (u11,u12, . . . ,u1,n+1)′ ∈Rn+1 is such that ||u1|| = 1 and it satisfies

−u11 +
k+1∑
`=2

u1` = 0 (35)

u11 −ku1` = 0, 2 ≤ `≤ k +1 (36)

u1` = 0, k +1 < j ≤ n +1 (37)

When the firm acquires k signals, it acquires a signal about its overall demand:

s1 = u′
1~x +ν1, ν1 ∼N

(
0,

( 1
k

)1− 1
k

((
1+ 1

k

)
e−2κ(k)

) 1
k

(
1+ 1

k

)− ( 1
k

)1− 1
k

((
1+ 1

k

)
e−2κ(k)

) 1
k

)

with u1 ∈Rn+1 such that ||u1|| = 1, satisfying Equations (35) to (37), and k −1 signals about relative

demand with the following structure:

si = u′
i~x +νi , νi ∼N

(
0,

( 1
k

)1− 1
k

((
1+ 1

k

)
e−2κ(k)

) 1
k

( 1
k

)− ( 1
k

)1− 1
k

((
1+ 1

k

)
e−2κ(k)

) 1
k

)
, 2 ≤ i ≤ k

and {ui }i∈{2,...,k},ui ∈Rn+1 are such that ||ui || = 1, ui ⊥ ui ′ ,∀i , i ′ ∈ {1, . . . ,k}, i 6= i ′, and they satisfy

k+1∑
m=2

ui` = 0 (38)

ui 1 = 0 (39)

ui` = 0, k +1 < j ≤ n +1 (40)

for i ∈ {2, . . . ,k}

A function that satisfies Proposition A.2 is κ(k) = 1
2 log(a +bk), with a > 1, b ∈ (0,1).

Proposition A.3. (Optimal Information Structure With Different Prior Variance for Aggregate and

Regional Shocks) Assume that the firm has a different prior variance regarding the aggregate shock
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and the regional shocks. That is,

Σ−1 =

 σ2
m 0′

1×n

0n×1 σ2
λ

In×n


Then the solution to the problem in Equation (5)-Equation (8) is such that there exists a threshold

k(κ,σ2
m ,σ2

λ
) = (e2κ− 1)

σ2
λ

σ2
m

such that if k > k(κ,σ2
m ,σ2

λ
), the firm acquires one signal, while if k ≤

k(κ,σ2
m ,σ2

λ
), the firm acquires k signals. When k > k(κ,σ2

m ,σ2
λ

), the signal that the firm acquires

has the following structure:

s1 = u′
1~x +ν1, ν1 ∼N

(
0,

1

e2κ−1

)
(41)

where the vector of loadings u1 = (u11,u12, . . . ,u1,n+1)′ ∈Rn+1 is such that ||u1|| = 1 and it satisfies

−σλu11 +
k+1∑
`=2

σmu1` = 0 (42)

−σλu11 +kσmu1` = 0, 2 ≤ `≤ k +1 (43)

u1` = 0, k +1 < j ≤ n +1 (44)

When k ≤ k(κ,σ2
m ,σ2

λ
), the signals that the firm acquire consist of one signal with the following

structure:

s1 = u′
1~x +ν1, ν1 ∼N

0,

(
1
kσ

2
λ

) k−1
k ×

[(
σ2

m + 1
kσ

2
λ

)
e−2κ

] 1
k

(
σ2

m + 1
kσ

2
λ

)
−

(
1
kσ

2
λ

) k−1
k ×

[(
σ2

m + 1
kσ

2
λ

)
e−2κ

] 1
k

 (45)

with u1 ∈ Rn+1 such that ||u1|| = 1, satisfying Equations (42) to (44), and k − 1 signals with the

following structure:

si = u′
i~x +νi , νi ∼N

0,

(
1
kσ

2
λ

) k−1
k ×

[(
σ2

m + 1
kσ

2
λ

)
e−2κ

] 1
k

(
1
kσ

2
λ

)
−

(
1
kσ

2
λ

) k−1
k ×

[(
σ2

m + 1
kσ

2
λ

)
e−2κ

] 1
k

 , 2 ≤ i ≤ k (46)
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and {ui }i∈{2,...,k},ui ∈Rn+1 are such that ||ui || = 1, ui ⊥ ui ′ ,∀i , i ′ ∈ {1, . . . ,k}, i 6= i ′, and they satisfy

k+1∑
m=2

ui` = 0 (47)

ui 1 = 0 (48)

ui` = 0, k +1 < j ≤ n +1 (49)

for i ∈ {2, . . . ,k}13

B Proofs

In this section, I show the proofs for the propositions and corollaries. I proceed by first showing

in Appendix B.1 the results under headquarters decision-making, then the in Appendix B.2 results

under regional division decision-making.

B.1 Headquarters Decision-Making

B.1.1 Proof of Proposition 1

Before solving the LQG-RI problem, let’s first write the firm’s objective function. Take a firm that is

in k regions, j ∈ [k] = {1,2, . . . ,k}. Note that:

∑
l∈{1,...,k}

B

2
(pl j −p¦

l j )2 = (~p j −H′
j~x)′diag(B/2)(~p j −H′

j~x)

where diag(B/2) is a diagonal matrix with diagonal values being B/2. Now, given a history of signals

S0
j = S j 0 ∪S−1, the optimal price under imperfect information

~p∗
j ≡ argmax~p j

−E[(~p j −~p¦
j )′diag(B/2)(~p j −~p¦

j )|S0
j

]
~p∗

j = E
[
~p¦

j |S0
j

]

13While equations (42)-(44) and (47)-(49) do not generate necessary an orthonormal basis, since the ˜̃Ω is real and
symmetric, the Spectral theorem guarantees the existence of an orthonormal basis. Then, one can use the Gram-
Schmidt process to find an orthonormal basis.
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Now, plugging ~p∗
j into E

[
(~p j −~p¦

j )′diag(B/2)(~p j −~p¦
j )|S0

j

]
gives us

E
[
(E

[
~p¦

j |S0
j

]−~p¦
j )′diag(B/2)(E

[
~p¦

j |S0
j

]−~p¦
j )|S0

j

]
Now, I perform a series of matrix operations to transform this into the objective function in Afrouzi

and Yang (2021).

E
[
(E

[
~p¦

j |S0
j

]−~p¦
j )′diag(B/2)(E

[
~p¦

j |S0
j

]−~p¦
j )|S0

j

] (1)= E
[
(E

[
H′

j~x|S0
j

]−H′
j~x)′diag(B/2)(E

[
H′

j~x|S0
j

]−H′
j~x)|S0

j

]
(2)= E

[
(E

[
~x|S0

j

]−~x)′H j diag(B/2)H′
j (E

[
~x|S0

j

]−~x)|S0
j

]
(3)= E

[
(E

[
~x|S0

j

]−~x)′ ˜̃Ω j (E
[
~x|S0

j

]−~x)|S0
j

]
(4)= E

[
tr

(
(E

[
~x|S0

j

]−~x)′ ˜̃Ω j (E
[
~x|S0

j

]−~x)
)|S0

j

]
(5)= E

[
tr

( ˜̃Ω(E
[
~x|S0

j

]−~x)(E
[
~x|S0

j

]−~x)′
)|S0

j

]
(6)= tr

( ˜̃Ω jE
[
(E

[
~x|S0

j

]−~x)(E
[
~x|S0

j

]−~x)′|S0
j

])
(7)= tr

( ˜̃Ω jΣ j 0
)

where in (1) I use ~p¦
j = H′

j~x, (2) I factor H j out, and (3) define ˜̃Ω j ≡ H j diag(B/2)H′
j . In (4), I use the

fact that the trace of a scalar is the scalar, (5) tr (AB) = tr (B A), (6) tr (E[A]) = E[tr (A)], taking ˜̃Ω out

of the expectation operation. Finally, in (7) Σ j 0 ≡ E[(E
[
~x|S0

j

]−~x)(E
[
~x|S0

j

]−~x)′|S0
j

]
. Then, we can

use tr
( ˜̃ΩΣ0

)= tr
(
Σ0

˜̃Ω
)
. The LQG-RI problem is given by

max
Σ0

−1

2
tr (Σ0

˜̃Ω)

s.t.
1

2
ln

( |Σ−1|
|Σ0|

)
≤ κ

Σ−1 −Σ0 º 0

0 ≺Σ−1 ¹∞

or

max
Σ0

−1

2

{
tr (Σ0

˜̃Ω)+ ω̃ ln
( |Σ−1|
|Σ0|

)}
+ ω̃ jκ

s.t. Σ−1 −Σ0 º 0

0 ≺Σ−1 ¹∞
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where ω̃ j is the Lagrange multiplier associated with the capacity constraint, and I omit j , and
1
2 ln

( |Σ−1|
|Σ0|

)
= κ, as we can always decrese profit losses by decreasing posterior uncertainty about

the shocks. Note that this is basically a static version of the DRIP problem outlined in Afrouzi

and Yang (2021), with the ω̃ j being the marginal cost of information acquisition and an additional

constraint. Let’s look at ˜̃Ω j ≡ H j diag(B/2)H′
j

˜̃Ω j ≡ H j diag(B/2)H′
j

Since j ∈ [k],

H′
j =



1 1 0 . . . . . . . . . 0

1 0 1 0 . . . . . . 0

...
...

. . . . . . . . . . . .
...

1 0 0 . . . 1 . . . 0


k×(n+1)

=
[

1k×1 I(k×k) 0k×(n−k)

]
(50)
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where 1k×1 is a vector of ones, Ik×k is the identity matrix, and 0k×(n−k) is a matrix of zeros. So,

˜̃Ω j = H j diag
(
B

)
H′

j (51)

=


1′

1×k

Ik×k

0′
(n−k)×k


diag

(
B

)[
1k×1 Ik×k 0k×(n−k)

]
(52)

=


kB B1′ 01×(n−k)

B1 diag
(
B

)
k×k 0k×(n−k)

0(n−k)×1 0(n−k)×k 0(n−k)×(n−k)


(53)

˜̃Ω j = kB


1 1

k 1′
1×k 01×(n−k)

1
k 1k×1 diag

( 1
k

)
k×k 0k×(n−k)

0(n−k)×1 0(n−k)×k 0(n−k)×(n−k)


︸ ︷︷ ︸

≡Ω(k)

(54)

We can solve the following problem

max
Σ0

−1

2

{
tr (Σ0Ω(k))−ω ln

( |Σ−1|
|Σ0|

)}
s.t. Σ−1 −Σ0 º 0

0 ≺Σ−1 ¹∞

by factoring out kB and defining ω = 1
kB ω̃, with 1

2 ln
( |Σ−1|
|Σ0|

)
= κ. This problem can be solved using

Lagrangian methods, in particular we can use the results from Afrouzi and Yang (2021). Using

Theorem 2.1 from Afrouzi and Yang (2021), we get

Σ0 =ωΣ
1
2
−1

[
Max

(
Σ

1
2
−1ΩΣ

1
2
−1,ω

)]−1
Σ

1
2
−1 (55)

where Max is the operator such that for any symmetric matrix X with spectral decomposition X =
UDU′, Max(X,ω) ≡ Umax(D,ω)U′, where max(D,ω) operates on every element on the diagonal.
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Since I assume that Σ−1 = I, we have

Σ0 =ω
[

Max
(
Ω,ω

)]−1

(1)= ω
[

Umax
(
D,ω

)
U′

]−1

Σ0
(2)= ωUmax

(
D,ω

)−1U−1 (56)

where in (1) we perform a spectral decomposition ofΩ, noting thatΩ is real and symmetric. In (2),

we basically use the inverse property, (AB)−1 = B−1 A−1, and the fact that given that Ω is real and

symmetric, we can find U orthogonal, such that U−1 = U′. Using the capacity constraint and the

assumption that Σ−1 = I, which implies in |Σ−1| = 1, we have

|Σ0| = e−2κ

Taking the determinant of Equation (56), we get

|Σ0| =ωn+1|max(D,ω)−1|
e−2κ =ωn+1|max(D,ω)−1| (57)

where |U| = 1, as it is an orthogonal matrix, |AB | = |A||B | and |c An×n | = cn |A|. Now, let’s calculate

the eigenvalues ofΩ. We want to find d such that det (Ω(k)−dI) = 0 . First, let’s writeΩ(k)−dI as

a block matrix

(Ω(k)−dI) =

 A11 A12

A21 A22
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where A11 = 1−d , A12 = ( 1
k 1′

1×k ,01×(n−k))1×n , A21 =


1
k 1k×1

0(n−k)×1


n×1

, and

A22 =

 diag( 1
k −d)k×k 0k×(n−k)

0(n−k)×k −dI(n−k)×(n−k)


n×n

. Since A11 is invertible, we have that

det (Ω(k)−dI) = det (A11)×det (A22 − A21 A−1
11 A12)

= det (1−d)×det (A22 + (− 1

1−d
A21)A12)

Note that A22 is a square diagonal matrix with non-zero main diagonal elements. Therefore, A22 is

invertible. Furthermore, A′
12 and (− 1

1−d A21) are column vectors. Then, by the matrix determinant

lemma, we have

det (A22 + (− 1

1−d
A21)A12) = (1+ A12 A−1

22 (− 1

1−d
A21))×det (A22)

Let’s calculate these objects. First, since A22 is a diagonal matrix, det (A22) = ( 1
k −d

)k × (−d)(n−k)

and

(1+ A12 A−1
22 (− 1

1−d
A21)) = 1+ (

1

k
1′

1×k ,01×(n−k))

 diag( 1
k −d)k×k 0k×(n−k)

0(n−k)×k −dI(n−k)×(n−k)


−1

(− 1

1−d


1
k 1k×1

0(n−k)×1

)

= 1− 1

1−d
(

1

k
1′

1×k ,01×(n−k))

 diag( 1
k −d)−1

k×k 0k×(n−k)

0(n−k)×k − 1
d I(n−k)×(n−k)




1
k 1k×1

0(n−k)×1



= 1− 1

1−d
(

1

k
1′

1×k ,01×(n−k))


1
k

1
k −d

1k×1

0(n−k)×1


= 1− 1

1−d

[ 1

k

( 1
k

1
k −d

)×k
]

= 1− 1

1−d

1

k

1
1
k −d
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So

det (A22 + (− 1

1−d
A21)A12) = (1− 1

1−d

1

k

1
1
k −d

)× ( 1

k
−d

)k × (−d)(n−k)

= 1

1−d

1
1
k −d

((1−d)(
1

k
−d)− 1

k
)× ( 1

k
−d

)k × (−d)(n−k)

= 1

1−d
((1−d)(

1

k
−d)− 1

k
)× ( 1

k
−d

)k−1 × (−d)(n−k)

and

det (Ω(k)−dI) = (1−d)× 1

1−d
((1−d)(

1

k
−d)− 1

k
)× ( 1

k
−d

)k−1 × (−d)(n−k)

= ((1−d)(
1

k
−d)− 1

k
)× ( 1

k
−d

)k−1 × (−d)(n−k)

= (−d − d

k
+d 2)× ( 1

k
−d

)k−1 × (−d)(n−k)

det (Ω(k)−dI) =
((

1+ 1

k

)−d
)
× ( 1

k
−d

)k−1 × (−d)(n−k+1)

To find the eigenvalues, we find d such that

((
1+ 1

k

)−d
)
× ( 1

k
−d

)k−1 × (−d)(n−k+1) = 0 (58)

From Equation (58), we can see that there is one eigen values with value
(
1+ 1/k

)
, k −1 eigenval-

ues with values 1/k, and (n − k + 1) eigenvalues with zero value. Now, let’s find the eigenvectors

associated with those eigenvalues. First, when d = 1+ 1
k , we have


1−

(
1+ 1

k

)
1
k 1′ 01×(n−k)

1
k 1 diag

( 1
k −

(
1+ 1

k

))
k×k 0k×(n−k)

0(n−k)×1 0(n−k)×k −
(
1+ 1

k

)
I(n−k)×(n−k)





v1

v2

...

vn

vn+1



=



0

0

...

0

0
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which implies in

−1

k
v1 + 1

k

k+1∑
j=2

v j = 0,
1

k
v1 − v j = 0,∀ j ≤ k +1, −

(
1+ 1

k

)
v j = 0, j > k +1 (59)

Let v1 = 1, then v j = 1/k, j ≤ k +1, v j = 0, j > k +1. So, an eigenvector associated with this eigen

values is (1,
1

k
, . . . ,

1

k︸ ︷︷ ︸
k times

, 0, . . . ,0︸ ︷︷ ︸
n−k times

)′. Note that this is not a unit vector. Therefore, we can define the unit

eigenvector associated with d1 = (1+ 1
k ) to be

u1 = 1√
1+ 1

k

× (1,
1

k
, . . . ,

1

k︸ ︷︷ ︸
k times

, 0, . . . ,0︸ ︷︷ ︸
n−k times

)′ (60)

When d = 1
k , we have


1− 1

k
1
k 1′ 01×(n−k)

1
k 1 0 0k×(n−k)

0(n−k)×1 0(n−k)×k −
(

1
k

)
I(n−k)×(n−k)





v1

v2

...

vn

vn+1



=



0

0

...

0

0


which implies in

(
1− 1

k

)
v1 + 1

k

k+1∑
j=2

v j = 0,
1

k
v1 = 0, −1

k
v j = 0, j > k +1

Hence, the eigenspace associated with the eigenvalue d2 = 1
k is spanned by {e(n+1)

i −e(n+1)
k+1 }i∈{2,3,...,k},

where e(n+1)
i is the standard basis vector of dimension n +1, with one in the i -th entry. These are

k −1 eigenvectors. Note that {e(n+1)
i −e(n+1)

k+1 }i∈{2,3,...,k} is not an orthonormal basis. To construct an

orthonormal basis, we can perform a Gram-Schmidt process to {e(n+1)
i −e(n+1)

k+1 }i∈{2,3,...,k}, which will

give us an orthonormal basis {ui }i=2,...,k . More specifically, the Gram-Schmidt process to {e(n+1)
i −
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e(n+1)
k+1 }i∈{2,3,...,k} yields the following orthonormal basis {ui }2≤i≤k :

ui = 1√
1+ 1

i−1

(e(n+1)
i − 1

i −1

i−1∑
m=2

e(n+1)
m − 1

i −1
e(n+1)

k+1 ), i ≥ 2 (61)

where
∑i−1

m=2 e(n+1)
m = 0 for i = 2.

For d = 0, we do not need to calculate the eigenvectors as firms never acquire information

along the dimension spanned by the eigenvectors associated with the eigenvalue d = 0.

Therefore,

D = diag(di i )i∈{1,...,n+1}, di i =


1+ 1

k , i = 1

1
k ,2 ≤ i ≤ k +1

0 ,k +1 < i ≤ n +1

(62)

From Equation (57), and Equation (62), we have two cases: (1)ω ∈ ( 1
k ,1+ 1

k ], and (2)ω ∈ (0, 1
k ]. Note

that ω> 1+ 1
k implies that the firm won’t acquire information at all, which is not optimal. Let’s first

consider the first case

Case 1: ω ∈ ( 1
k ,1+ 1

k ]. In this case, firm acquires one signal, as the marginal cost of information

acquisition ω is higher than the marginal benefit of pay attention to signals with eigenvalue 1/k.

Also, when ω ∈ ( 1
k ,1+ 1

k ], using Equation (57), we have

ω=
(
1+ 1

k

)
e−2κ (63)

Finally, we can find (κ,k) such that ω ∈ ( 1
k ,1+ 1

k ]:

ω ∈ ( 1

k
,1+ 1

k

] ⇐⇒ ω> 1

k
and ω≤ 1+ 1

k

(
1+ 1

k

)
e−2κ > 1

k
⇐⇒ k > e2κ−1

and

(
1+ 1

k

)
e−2κ ≤ 1+ 1

k
⇐⇒ e2κ ≥ 1
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which is true for all κ> 0. Therefore, we have that a firm that operates in k regions pays attention

to a single signal when k > e2κ−1.

Case 2: ω ∈ (0, 1
k ]. In this case, the firm acquires k signals, as the marginal cost of information

acquisition ω is smaller than the marginal benefit of paying attention to signals with eigenvalue of

at least 1/k. Also, when ω ∈ (0, 1
k ], using Equation (57), we have

ω= 1

k

[
(k +1)e−2κ] 1

k (64)

Finally, we can find (κ,k) such that ω ∈ (0, 1
k ]:

1

k

[
(k +1)

1

e2κ

] 1
k ≤ 1

k
⇐⇒ k ≤ e2κ−1

Therefore, with with cases 1 and 2, we have that a firm the operates in k regions that has κ capacity

acquires one signal when k > e2κ−1, and acquires k signals when k ≤ e2κ−1. By defining k(κ) =
e2κ−1, we have the first part of Proposition 1.

From Theorem 2.2 from Afrouzi and Yang (2021), let {di (k)}1≤i≤n+1 be the set of eigenvalues of

Ω(k) indexed in descending order. Let {ui (k)}1≤i≤n+1 be orthonormal eigenvectors that correspond

to those eigenvalues. Then, firm j ’s posterior belief is spanned by the following 0 ≤ k+ ≤ k signals

si j (k) = g′
i (k)~x +νi j (k), 1 ≤ i ≤ k+

where k+ is the number of the eigenvalues that are at least as large asω, and for i ≤ k+, gi (k) ≡ ui (k)

is the loading of signal i on~x, andνi j ∼N (0, ω
di (k)−ω ) is the firm’s rational inattention error in signal

i that is orthogonal to~x and all other rational inattention errors. Let’s consider the two cases above

again:

Case 1: ω ∈ ( 1
k ,1+ 1

k ]. When k > e2κ−1, the firm acquires one signal. The eigenvector associated

with d1(k) is u1(k) = 1√
1+ 1

k

(1,
1

k
, . . . ,

1

k︸ ︷︷ ︸
k−1 times

, 0, . . . ,0︸ ︷︷ ︸
n−k+1 times

)′. Therefore, the signal that the firm acquires has

the following structure:

sHQ
1 j (k) = 1√

1+ 1
k

(1,
1

k
, . . . ,

1

k
,0, . . . ,0)~x +νi j (k), ν1 j ∼N

(
0,

1

e2κ−1

)
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To provide a better idea about the interpretation of this signal, we can rewrite it in terms of firm’s

ideal prices:

sHQ
1 j (k) = 1√

1+ 1
k

[ 1

k

∑
l∈[k]

p¦
l

]
+νi j (k), ν1 j ∼N

(
0,

1

e2κ−1

)

We can see that sHQ
1 j (k) is a signal about firm’s average prices across regions where it operate. Given

the log-linear relationship between regional demand and prices, this can interpreted as a signal

about the firm’s overall demand across those regions.

Case 2: ω ∈ (0, 1
k ]. When k ≤ e2κ − 1, the firm acquires k signals. The eigenvector associated

with d1(k) is u1(k) = 1√
1+ 1

k

(1,
1

k
, . . . ,

1

k︸ ︷︷ ︸
k−1 times

, 0, . . . ,0︸ ︷︷ ︸
n−k+1 times

)′. The eigenvectors associated with the repeated

eigenvalue d2 = 1
k are given by {ui : ui = 1√

1+ 1
i−1

(e(n+1)
i − 1

i−1

∑i−1
m=2 e(n+1)

m − 1
i−1 e(n+1)

k+1 ), i ∈ {2, . . . ,k}}.

Therefore, the signals that the firm acquires have the following structure:

1. One signal about its overall demand:

sHQ
1 j (k) = 1√

1+ 1
k

(1,
1

k
, . . . ,

1

k
,0, . . . ,0)~x +νi j (k), ν1 j ∼N

(
0,

1

(k +1)1− 1
k (e2κ)

1
k −1

)

2. k −1 signals about its regional relative demands:

sHQ
i j (k) = 1√

1+ 1
i−1

(p¦
i−1 −

1

i −1

i−1∑
m=2

p¦
m−1 −

1

i −1
p¦

k )+νi j (k),

νi j (k) ∼N

(
0,

1

(k +1)−
1
k (e2κ)

1
k −1

)
i ∈ {2, . . . ,k}

where I wrote both signal structure in terms of ideal prices. Recall that the k − 1 are sig-

nals about relative demands because its eigenvectors are basically an orthonormal basis that

span the same eigenspace as {p¦
i −p¦

k }i∈{1,...,k−1}, which are vectors of relative prices.

With cases 1 and 2, we have the second part of the Proposition 1. ä

B.1.2 Proof of Proposition 2

This result follows from optimal prices in Proposition A.1 by taking the difference between pHQ
1 j and

pHQ
` j ,` ∈ [k] and then calculating its variance, var (pHQ

1 j −pHQ
` j ) and comparing with var (p¦

1 j−p¦
` j ) =
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2,` ∈ [k]. For a firm j in k regions, after some algebra, we get

var (p∗
1 j −p∗

` j ) =

0 ,k > e2κ−1

2(1− ((k +1)e−2κ)1/k ) ,k ≤ e2κ−1

For k > e2κ−1, it is easy to see that var (p∗
1 j −p∗

` j ) = 0 < 2. For k ≤ e2κ−1,

2(1− ((k +1)e−2κ)1/k ) ≤ 2 ⇐⇒ 1− ((k +1)e−2κ)1/k ≤ 1 ⇐⇒ ((k +1)e−2κ)1/k ≥ 0

which is always true for k ≥ 1,κ> 0. Finally, with a slight abuse of notation, when k ≤ e2κ−1,

∂var (p∗
1 j −p∗

` j )

∂k
=−2

k

[
(k +1)e−2κ

] 1
k
{( 1

k +1

)− 1

k

(
ln(k +1)−2κ

)}< 0,∀k ≥ 2

as
( 1

k+1

)− 1
k

(
ln(k +1)−2κ

)≥ 0. To see this, note that

k ≤ e2κ−1 ⇐⇒ ln(k +1)−2κ< 0

and

( 1

k +1

)− 1

k

(
ln(k +1)−2κ

)> 0 ⇐⇒ ( k

k +1

)
︸ ︷︷ ︸

>0

> (
ln(k +1)−2κ

)︸ ︷︷ ︸
<0, as k≤e2κ−1

and within-firm relative price dispersion between region one and `, ` ∈ [k] is decreasing in k. ä

B.1.3 Proof of Proposition 3

This result follows from Proposition A.1 by taking derivatives of pHQ
l j with relation to m. This results

in

∂pHQ
l j

∂m
=


(1−e−2κ) ,k > k(κ)

1− 1

(k+1)1− 1
k (e2κ)

1
k

,k ≤ k(κ)
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Then, for k ≤ k(κ), we can calculate
∂(∂p

HQ
l j /∂m)

∂k . First, let f (k) ≡ (k +1)−(1− 1
k ). Then,

∂(
∂pHQ

l j

∂m )

∂k
=−

[
f ′(k)(e− 2κ

k )+ f (k)(e− 2κ
k )

(2κ

k2

)]
where f ′(k) =− f (k)

[
1

k2 ln(k +1)+ (1− 1
k ) 1

k+1

]
. So,

∂(
∂pHQ

l j

∂m )

∂k
=− f (k)(e− 2κ

k )
1

k

[
− 1

k
ln(k +1)− (k −1)

k +1
+

(2κ

k

)]
Now, note that

∂(
∂pHQ

l j

∂m )

∂k
≥ 0 ⇐⇒ −1

k
ln(k +1)− (k −1)

k +1
+

(2κ

k

)
≤ 0

⇐⇒ 2κ≤ ln(k +1)+ k(k −1)

k +1

Let h(k) ≡ ln(k+1)+ k(k−1)
k+1 . Note that h′(k) > 0,∀k ≥ 1. For κ≤ ln(2)

2 , we have that h(k) ≥ 2κ,∀k ≥ 1.

Now, for κ> ln2
2 we have that h(1) < 2κ. However, since h′(k) > 0∀k ≥ 1, ∃k∗ such that h(k∗) = 2κ,

for which k ≤ k∗ implies in h(k) ≤ 2κ, and for which k > k∗ implies in h(k) > 2κ. Since
∂(

∂p
HQ
l j
∂m )
∂k ≥

0 ⇐⇒ 2κ≤ ln(k +1)+ k(k−1)
k+1 , we have just proved the result. ä

B.1.4 Proof of Proposition 4

This result follows from Proposition A.1 by taking derivatives of pHQ
l j with relation to λ`, ` ∈ [k]. ä

B.2 Regional Division Decision-Making

B.2.1 Proof of Proposition 5

Before solving the LQG-RI problem, let’s first write the firm’s objective function. Take a regional

division operating in l . First, note that p¦
l j = (e(n+1)

1 +e(n+1)
l+1 )′~x. Using similar arguments as in the

Proof of Proposition 1, we have

E
[
(E

[
p¦

l j |S0
j

]−p¦
l j )′B(E

[
p¦

l j |S0
j

]−p¦
l j )|S0

j

]
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Then, performing the same series of operations as in the Proof of Proposition 1, we have

E
[
(E

[
p¦

l j |S0
j

]−p¦
l j )′B(E

[
p¦

l j |S0
j

]−p¦
l j )|S0

j

]= E[(E
[
~x|S0

j

]−~x)′(e(n+1)
1 +e(n+1)

l+1 )B(e(n+1)
1 +e(n+1)

l+1 )′(E
[
~x|S0

j

]−~x)|S0
j

]
= E[(E

[
~x|S0

j

]−~x)′ ˜̃Ωl j (E
[
~x|S0

j

]−~x)|S0
j

]
= tr

( ˜̃Ωl jΣl j 0
)

where ˜̃Ωl j ≡ (e(n+1)
1 + e(n+1)

l+1 )B(e(n+1)
1 + e(n+1)

l+1 )′ and it is indexed by l as it depends which regional

division is solving the problem. Importantly, we can rewrite ˜̃Ωl j as

˜̃Ωl ≡ (e(n+1)
1 +e(n+1)

l+1 )B(e(n+1)
1 +e(n+1)

l+1 )′

= B (e1e′1 +e1e′l+1 +el+1e′1 +el+1e′l+1)︸ ︷︷ ︸
Ωl

where I drop the j index. We can then solve the following LGQ-RI

max
Σl ,0

−1

2

{
tr (Σl ,0Ωl )−ω ln

( |Σl ,−1|
|Σl ,0|

)}
s.t. Σl ,−1 −Σl ,0 º 0

0 ≺Σl ,−1 ¹∞

where objects are all indexed by l , as it is the regional division l who is solving the problem. Im-

portantly, ln
( |Σl ,−1|
|Σl ,0|

)
= κl j , where κl j is now indexed by the regional division and the firm. I assume

that Σl ,−1 = I. The optimal posterior, Σl ,0 is given by

Σl ,0 =ωl
[
Max(Ωl ,ωl )

]−1

=ωUl max(Dl ,ω)−1U−1
l

whereΩl = Ul Dl Ul isΩl eigendecomposition. First, note that we can writeΩl as

Ωl =

 1 e′(1×n)
l

en×1
l e(n×1)

l e′(1×n)
l
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To find its eigenvalues and eigenvectors, we want det (Ωl −dI) = 0

det (Ωl −dI) =

 1−d e′(1×n)
l

en×1
l e(n×1)

l e′(1×n)
l −dIn


Since (1−d) is invertible, we have

det (Ωl −dI) =

 1−d e′(1×n)
l

en×1
l e(n×1)

l e′(1×n)
l −dIn

= det (1−d)×det (e(n×1)
l e′(1×n)

l −dIn −en×1
l (1−d)−1e′(1×n)

l )

e(n×1)
l e′(1×n)

l −dIn is a square diagonal matrix with non-zero main diagonal elements. Therefore, it

is invertible. −(1−d)−1en×1
l and en×1

l are column vectors. Therefore, we can use the matrix deter-

minant lemma to calculate det (e(n×1)
l e′(1×n)

l −dIn −en×1
l (1−d)−1e′(1×n)

l ). The resulting expression

for det (Ωl −dI) is

det (Ωl −dI) = (2−λ)× (−λ)n = 0

Therefore, we have only one positive eigenvalue, with value equals to 2. The other n eigenvalues

have zero value. When d1 = 2, the eigenvector associated satisfies

−v1 + vl+1 = 0, 2vi = 0, i 6= l +1

Hence, an eigenvector is u1 = 1p
2

(1,0, . . . ,0,1,0, . . . ,0)′ = 1p
2

(e1 +el+1) ∈ Rn+1 and D = (di i )i {1,...,n+1}

such that di i = 2, i = 1 and di i = 0, i > 1. As a result, the regional division acquires exactly one

signal about its own demand. The capacity constraint and the optimal posterior imply that

e−2κl j =ωn+1
l |max

(
D,ωl

)−1|

Since the capacity constraint is binding, we have that ωl is non-negative. Furthermore, note that

for the above equation to hold, ωl cannot be zero. With positive ωl , we have

ωl = 2e−2κl j
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Using Theorem 2.2 from Afrouzi and Yang (2021), we have that the regional division l from firm j

acquires one signal about its own demand with the following structure:

sRD
1l j =

1p
2

p¦
l +ν1l j , ν1l j ∼N

(
0,

1

e2κl j −1

)
and we have the result. ä

B.2.2 Proof of Proposition 6

This result follow from Proposition 5 and Proposition 2.3 from Afrouzi and Yang (2021). Using

them, we have

pRD
l j =

(
1−e−2κl j

)[
m +λl +

p
2ν1l j

]
Hence,

∂pRD
l j

∂m
= (1−e−2κl j )

Assuming further that κl j = κ
k , we have

∂
(
∂pRD

l j /∂m
)

∂k
=−2

κ

k
e−2 κ

k < 0

ä

B.2.3 Proof of Corollary 1

To see that, we need to compare
∂pHQ

l j

∂m ,
∂pRD

l j

∂m . When, k > e2κ−1, it is clear, as κ> κ
k . For k ≤ e2κ−1,

∂pHQ
l j

∂m
>
∂pRD

l j

∂m
⇐⇒ 1− 1

(k +1)1− 1
k (e2κ)

1
k

> 1−e−2 κ
k

⇐⇒ 1

(k +1)1− 1
k (e2κ)

1
k

< e−2 κ
k

⇐⇒ 1

(k +1)1− 1
k

< 1

⇐⇒ 1 < (k +1)1− 1
k
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which holds for any k ≥ 1. ä

B.2.4 Proof of Proposition 7

This result follow from Proposition 5 and Proposition 2.3 from Afrouzi and Yang (2021). Using

them, we have

pRD
l j =

(
1−e−2κl j

)[
m +λl +

p
2ν1l j

]
Hence

∂pRD
l j

∂λl
= (

1−e−2κl j
)

and
∂pRD

l j

∂λ`
= 0, ` 6= l

ä

B.2.5 Proof of Corollary 2

This is a direct result of Proposition 4 and Proposition 7.

B.3 Additional Results and Extensions of the Static Model

B.3.1 Proof of Proposition A.1

This result follows from the signal structure in Proposition 1 and Proposition 2.3 from Afrouzi and

Yang (2021). ä

B.3.2 Proof of Proposition A.2

The outline of the proof of this result is very similar to Proposition 1, except that instead of κ,

we consider κ(k) : R+ 7→ R+. In particular, the capacity constraint becomes |Σ0| = e−2κ(k). After

calculating the eigenvalues of Ω(k), we have two cases: (1) ω ∈ (1/k,1+ 1/k], which implies in one

eigenvalue larger than ω; (2) ω ∈ (0, 1/k] which implies in k eigenvalues larger than ω.

Case 1: ω ∈ (1/k,1+ 1/k]. In this case, the firm acquires one only signal. Using the capacity con-

staint and the optimal posterior, we have

ω(k) = (
1+ 1

k

)
e−2κ(k)
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So we must have

(
1+ 1

k

)
e−2κ(k) > 1

k
⇐⇒ 1

2
ln(1+k) > κ(k)

Also, we must have

(
1+ 1

k

)
e−2κ(k) ≤ (

1+ 1

k

) ⇐⇒ e2κ(k) ≥ 1

Case 2: ω ∈ (0, 1/k]. In this case, the firm acquires k signals. Using the capacity constaint and the

optimal posterior, we have

ω(k) = 1

k

[
(k +1)

1

e2κ(k)

] 1
k

So we must have

1

k

[
(k +1)

1

e2κ(k)

] 1
k ≤ 1

k
⇐⇒ 1

2
ln(k +1) ≤ κ(k)

By assumption, we have that ∃k̄ > 0, such that 1
2 ln(k̄ +1) = κ(k̄), 1

2 ln(1+k) < κ(k) for k < k̄, and
1
2 ln(1 + k) > k̄. This implies that for k < k̄, the firm acquires k signals and for k > k̄, the firm

acquires only one signal, which is the first part of the proposition. For the signal structure, note

that the Ω(k) is the same as in Proposition 1. Therefore, the signal loadings are going to be given

by the eigenvectors associated with the eigenvalues ofΩ(k) as in Proposition 1. ä

B.3.3 Proof of Proposition A.3

The outline of the proof of this result is very similar to Proposition 1, except that the prior un-

certainty is not equal to the identity matrix. This changes the optimal posterior. Yet, under the

assumption I made about the Σ−1, the optimal posterior is still very tractable. When we assume

Σ−1 =

 σ2
m 0′

1×n

0n×1 σ2
λ

In×n
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the capacity constraint becomes

|Σ0| = |Σ−1|e−2κ

=σ2
m × (σ2

λ)ne−2κ

and the optimal posterior

Σ0 =ωΣ1/2
−1

[
Max

(
Σ1/2
−1 Ω(k)Σ1/2

−1 ,ω
)]−1

Σ1/2
−1

In particular, we need to calculate the eigenvalues of

Σ1/2
−1 Ω(k)Σ1/2

−1 =


σ2

m
1
kσmσλ1′

1×k 01×(n−k)

1
kσmσλ1k×1

1
kσ

2
λ

Ik×k 0k×(n−k)

0(n−k)×1 0(n−k)×k 0(n−k)×(n−k)


Using the expression of determinant of block matrices and the matrix determinant lemma as I did

in Proposition 1, I get the following:

det (Σ1/2
−1 Ω(k)Σ1/2

−1 −dI) =
(
σ2

m + 1

k
σ2
λ−d

)
× (

1

k
σ2
λ−d)k−1 × (−d)n−k+1 = 0

Therefore, there’s one eigenvalue with value
(
σ2

m + 1
kσ

2
λ

)
and k − 1 eigenvalues with value 1

kσ
2
λ

.

In particular, if we set σ2
m = σ2

λ
= 1, we are back to the Proposition 1. Let’s find the eigenvectors

associated with each one of these eigenvalues. First, for d1 =
(
σ2

m + 1
kσ

2
λ

)
, we have the following


σ2

m −σ2
m − 1

kσ
2
λ

1
kσmσλ1′

1×k 01×(n−k)

1
kσmσλ1k×1

1
kσ

2
λ

Ik×k −
(
σ2

m + 1
kσ

2
λ

)
I 0k×(n−k)

0(n−k)×1 0(n−k)×k −
(
σ2

m + 1
kσ

2
λ

)
I(n−k)×(n−k)





v1

v2

...

vn+1


=



0

0

...

0
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implying in

−σλv1 +
k+1∑
j=2

σm v j = 0,
1

k
σλv1 −σm v j = 0, j = 2, . . . ,k +1, −

(
σ2

m + 1

k
σ2
λ

)
v j = 0, j = k +2, . . . ,n +1

Therefore, an eigenvector associated with d1 =
(
σ2

m + 1
kσ

2
λ

)
is

u1 = 1√
1+ 1

k

σ2
λ

σ2
m

×
(
1,
σλ

σm

1

k
, . . . ,

σλ

σm

1

k
,0, . . .0

)′

For d2 = 1
kσ

2
λ

, we have


σ2

m − 1
kσ

2
λ

1
kσmσλ1′

1×k 01×(n−k)

1
kσmσλ1k×1

1
kσ

2
λ

Ik×k −
(

1
kσ

2
λ

)
I 0k×(n−k)

0(n−k)×1 0(n−k)×k −
(

1
kσ

2
λ

)
I(n−k)×(n−k)





v1

v2

...

vn+1


=



0

0

...

0


and

v1 = 0,
k+1∑
j=2

v j = 0, v j = 0, j = k +2, . . .n +1

Now, we can find the optimal posterior. There are two cases: (1) ω ∈ ( 1
kσ

2
λ

,σ2
m + 1

kσ
2
λ

]; (2) ω ∈
(0, 1

kσ
2
λ

].

Case 1: ω ∈ ( 1
kσ

2
λ

,σ2
m + 1

kσ
2
λ

]. In this case, the firm acquires one signal. Using the capacity con-

straint and the optimality conditional for optimal posterior, we get:

ω(κ,k,σm ,σλ) =
(
σ2

m + 1

k
σ2
λ

)
e−2κ

and we must have

(
σ2

m + 1

k
σ2
λ

)
e−2κ > 1

k
σ2
λ ⇐⇒ k > (e2κ−1)

σ2
λ

σ2
m
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Case 2: ω ∈ (0, 1
kσ

2
λ

]. In this case, the firm acquires k signals. Using the capacity constraint and

the optimality conditional for optimal posterior, we get:

ω(κ,k,σm ,σλ) =
( 1

k
σ2
λ

) k−1
k ×

[(
σ2

m + 1

k
σ2
λ

)
e−2κ

] 1
k

and we must have

( 1

k
σ2
λ

)1− 1
k ×

[(
σ2

m + 1

k
σ2
λ

)
e−2κ

] 1
k ≤ 1

k
σ2
λ ⇐⇒ k ≤ (e2κ−1)

σ2
λ

σ2
m

Therefore, we have a similar result to Proposition 1. There is threshold of number of regions

k(κ,σm ,σλ) = (e2κ − 1)
σ2
λ

σ2
m

such that if firm operates in more regions, it acquires a single signal.

If it operates in fewer regions, it acquires k signals. The distinguishing feature is that now the

relative prior uncertainty about the shocks also affect this threshold, in addition to the capacity.

Finally, using Theorem 2.2 from Afrouzi and Yang (2021), I can find the signal structure in each one

of these cases. ä

C Equilibrium Definition

In this section, I define the rational inattention, the flexible price, and the non-stochastic efficient

steady state equilibria.

Definition 1. A rational inattention equilibrium is a set of allocations for the households Ah(l ) =
{(Cl j t ) j∈[0,1],Ls

l t ,Bl t }t≥0 in each region l ∈ [n], an allocation for all firms A f = {(Y s
l j t )l∈L j , (Ll j t )l∈L j ,

S j t , (Pl j t )l∈L j } j∈[0,1],t≥0; a set of monetary and fiscal policies Ag = {Mt , (τl t )l∈[n], (Tl t )l∈[n]}t≥0; and a

set of prices P = {(Pl t )l∈[n],Wt , it }t≥0 such that given the processes for regional markups {Λl t }l∈[n],t≥0:

1. Given {Λl t }l∈[n],t≥0, P , and Ag , Ah(l ) solves the household’s problem in Equations (18)

to (20), ∀l ∈ [n]

2. Given {Λl t }l∈[n],t≥0, P , and Ag , A f solves the monopolistic competitive firm’s problem in

Equations (22) to (25), ∀ j ∈ [0,1]

3. Labor, bond holdings, and retailers’ regional good markets clear and government budget

constraint is satified:

(a)
∑

l∈[n] ζl Ls
l t =

∫ 1
0

∑
l∈L j

Ll j t d j
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(b)
∑

l∈[n] ζl Bl t = 0

(c) Cl j t = Y s
l j t ,∀l ∈ [n], j ∈ [0,1]

(d)
∑

l Tl t =
∫ 1

0
∑

l∈L j
τl t Pl j t Yl j t d j

Definition 2. A flexible price equilibrium is a set of allocations for the households Ah(l ) = {(Cl j t ) j∈[0,1],

Ls
l t ,Bl t }t≥0 in each region l ∈ [n], an allocation for all firms A f = {(Y s

l j t )l∈L j , (Ll j t )l∈L j , (Pl j t )l∈L j } j∈[0,1],t≥0;

a set of monetary and fiscal policies Ag = {Mt , (τl t )l∈[n], (Tl t )l∈[n]}t≥0; and a set of prices P =
{(Pl t )l∈[n],Wt , it }t≥0 such that given the processes for regional markups {Λl t }l∈[n],t≥0, and initial

set of signals {S−1
j } j∈[0,1]:

1. Given {Λl t }l∈[n],t≥0, P , and Ag , Ah(l ) solves the household’s problem in Equations (18)

to (20), ∀l ∈ [n]

2. Given {Λl t }l∈[n],t≥0, P , and Ag , A f solves the monopolistic competitive firm’s problem in

Equation (21), ∀ j ∈ [0,1]

3. Labor, bond holdings, and retailers’ regional good markets clear and government budget

constraint is satified:

(a)
∑

l∈[n] ζl Ls
l t =

∫ 1
0

∑
l∈L j

Ll j t d j

(b)
∑

l∈[n] ζl Bl t = 0

(c) Cl j t = Y s
l j t ,∀l ∈ [n], j ∈ [0,1]

(d)
∑

l Tl t =
∫ 1

0
∑

l∈L j
τl t Pl j t Yl j t d j

Definition 3. A non-stochastic efficient steady state equilibrium is a set of time-invariant allo-

cations for the households Ah(l ) = {(Cl j ) j∈[0,1],Ls
l ,Bl } in each region l ∈ [n], a time-invariant al-

location for all firms A f = {(Y s
l j )l∈L j , (Ll j )l∈L j } j∈[0,1],(Pl j )l∈L j

; a set of time-invariant monetary and

fiscal policies {M , (τl )l∈[n], (Tl )l∈[n]}; and a set of time-invariant prices P = {(Pl )l∈[n],W, i } such that

given time-invariant regional markups {Λl }l∈[n]:

1. Given {Λl }l∈[n], P , and Ag , Ah(l ) solves the household’s problem in Equations (18) to (20),

∀l ∈ [n]

2. Given {Λl }l∈[n], P , and Ag , A f solves the monopolistic competitive firm’s problem in Equa-

tion (21), ∀ j ∈ [0,1]
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3. Labor, bond holdings, and retailers’ regional good markets clear and government budget

constraint is satified:

(a)
∑

l∈[n] ζl Ls
l =

∫ 1
0

∑
l∈L j

Ll j d j

(b)
∑

l∈[n] ζl Bl = 0

(c) Cl j = Y s
l j ,∀l ∈ [n], j ∈ [0,1]

(d)
∑

l Tl =
∫ 1

0
∑

l∈L j
τl Pl j Yl j d j

with taxes that undo distortions from monopolistic competition, τl = 1−Λl ,∀l ∈ [n].

D Derivations of Optimality Conditions in the Model

Here, I characterize the flexible-price, imperfect information, and rational inattention optimality

conditions of the economy. The only block that changes is the supply side of the economy.

D.1 Household’s Optimality Conditions

Consider a representative household in region l ∈ [n]. First, we solve for the expenditure mini-

mization problem, given a level of consumption Cl t and given a vector of retailer-location prices

{Pl j t } j∈[0,1]. That is,

E (Cl t ; {Pl j t } j∈[0,1]) = min
{Cl j t } j∈[0,1]

∫ 1

0
Pl j tCl j t d j subject to Cl t =

(∫ 1

0
θ

Λl t −1
Λl t

l j C
1
Λl t

l j t d j
)Λl t ≥Cl t (65)

After defining the Lagrange multiplier associated with the constraint of the problem as the regional

price index, Pl t , the household l demand for retailer good j in period t is given by

Cl j t = θl j

(
Pl j t

Pl t

) Λl t
1−Λl t

Cl t (66)

Note that this is a demand per capita. The regional price index is given by

Pl t =
(∫ 1

0
θl j P

1
1−Λl t

l j t d j
)1−Λl t

(67)
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with Pl tCl t =
∫ 1

0 Pl j tCl j t d j . The share of expenditure in location l on retailer j is given by:

Pl j tCl j t

Pl tCl t
= θl j

(
Pl j t

Pl t

) 1
1−Λl t

(68)

Given the processes for prices {Pl t ,Wt }t≥0, the household maximizes

max
{Cl t ,Ll t }t≥0

E
f
0

[ ∞∑
t=0

βt ( log(Cl t )−Ll t
)]

s.t. Pl tCl t +Bl t ≤Wt Ll t + (1+ it−1)Bl t−1 +Profitsl t +Tl t

Let µl
t be the lagrange multiplier associated with the household’s l budget constraint at time t . The

first order conditions imply in:

βt 1

Pl tCl t
=µl

t (69)

βt 1

Wt
=µl

t (70)

µl t = (1+ it )E
[
µl t+1

]
(71)

Combining Equation (69) and Equation (70), we get that the nominal GDP in region l is equal to

economy-wide wages:

Pl tCl t =Wt (72)

Combining Equation (70) and Equation (71), we get that the region l euler equation is given by

β(1+ it )E
[ Wt

Wt+1

]= 1 (73)

Since Wt is the same across regions due to the single labor market assumption, Equation (73) im-

plies that the regional Euler equation does not depend on regional variables.
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D.2 Firms’ Optimality Conditions

Consider a retailer j ∈ [0,1], let L j be the set of region in which j is present. First, we solve for the

firm’s cost minimization problem in region l ∈L j , given Yl j t and Wt . That is,

Cl j t (Yl j t ;Wt ) = min
Ll j t

Wt Ll j t subject to Ll j t ≥ Yl j t (74)

Equation (74) implies that firm’s marginal cost is given by

MCl j t (Wt ) =Wt (75)

Flexible Pricing

Under full information, firm j maximization’s problem becomes static. That is,

max
(Pl j t )l∈L j

∑
l∈L j

((1−τl t )Pl j t −Wt )×Y s
l j t subject to Y s

l j t = ζlCl j t = ζl D(Pl j t/Pl t ;Cl t ) (76)

Furthermore, since firm’s demand in region l depends only on its relative prices in region l , we

can solve for the firm’s optimal pricing in each region l ∈ L j separately. Given the CES demand

function in Equation (66), the optimal pricing in the absence of any friction is given by

P¦
l j t =

1

(1−τl t )
Λl t ×MCl j t =

1

(1−τl t )
Λl t ×Wt (77)

Equation (77) characterizes the desired price firm j wants to set in region l at time t .

Optimal Pricing under Imperfect Information

Given firm’s marginal cost in region l , the firm’s optimal pricing problem given a sequence of sig-

nals {St }t≥0 is given by

(P∗
l j t )l∈L j = argmax(Pl j t )l∈L j

E
[ ∑

l∈L j

((1−τl t )Pl j t −Wt )×ζl D(Pl j t/Pl t ;Cl t )
∣∣S t ] (78)



29

Optimal Pricing under Rational Inattention

Under Rational Inattention, given a capacity κ, the firms solves the following problem:

max
{S j ,t⊂St ,{Pl j t (St

j )}l∈L j
}t≥0

E
[ ∞∑

t=0
βt W −1

t︸ ︷︷ ︸
discount

factor

×
{ ∑

l∈L j

((
1−τl

)
Pl j t Y s

l j t︸ ︷︷ ︸
revenue

in l

− Wt Ll j t︸ ︷︷ ︸
production

cost in l

)}]
(79)

s.t. Y s
l j t = ζlCl j t , l ∈L j (demand) (80)

I(S t
j ;~x t |S t−1

j ) ≤ κ j (info. processing constraint) (81)

S t
j = S t−1

j ∪S j t , S−1
j given (evolution of information set) (82)

where τl is a constant tax to firms in location l that eliminates steady-state inefficiencies coming

from monopolistic competition. From now on, I assume that κ j = κ,∀ j ∈ [0,1]. That is, all firms

have the same capacity. S−1
j is an initial signal. Finally, S t

j satisfies the no-forgetting condition,

which states that firms do not forget information over time. This will put an upper bound on the

amount of uncertainty the firm can choose. This part is the same as in the main text and put here

for completeness.

E Non-Stochastic Efficient Steady State

I log-linearize the model around a non-stochastic efficient steady state where the Central Bank

targets a constant nominal aggregate GDP, normalized to one, M = 1, and fiscal policy that undoes

distortions from monopolistic competition in each region l ∈ [n], τl = 1−Λl . In the non-stochastic

efficient steady state, region l household’s first order conditions in Equation (72) and Equation (73)

imply in:

PlCl =W (83)

The constant nominal aggregate GDP targeting implies in

M ≡ PC = ∏
l∈[n]

(PlCl )ζl (84)



30

Since PlCl =W , we have

M =W (85)

In the non-stochastic efficient steady state, the optimal flexible pricing implies in

P¦
l j =W (86)

Plugging this into the regional price index, we get

Pl =
(∫ 1

0
θl j W

1
1−Λl d j

)1−Λl

=W
(∫ 1

0
θl j d j

)1−Λl (87)

Now, using Equation (85) with M = 1,

Pl =
(∫ 1

0
θl j d j

)1−Λl (88)

The household l ’s consumption expenditure share on retailer j will be given by

Pl j Cl j

PlCl
= θl j∫ 1

0 θl j d j
(89)

Normalizing
∫ 1

0 θl j d j = 1,∀l ∈ [n]14, we get

Pl = 1 (90)

and

Pl j Cl j

PlCl
= θl j (91)

14This is not an innocuous assumption, as it makes the steady-state regional price level to be the same across
regions. As a result, the regional GDP is the same across regions in the non-stochastic efficient steady state.
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Equation (91) will be used to calibrate {θl j }l∈[n], j∈[0,1]. Finally, plugging Equation (90) into Equa-

tion (83), using M = 1 we get

Cl =
W

Pl
= 1 (92)

An implication of the non-stochastic efficient steady state is that P¦
l j = 1,∀l ∈ [n], j ∈ [0,1]. That is,

in the non-stochastic efficient steady state, firm j sets a uniform price across regions where it is

located, even with heterogeneous taste shifters and heterogeneous regional markups. The single

labor market assumption, along with the absence of region-specific productivity shocks are key

for this result. It will be useful for the calibration and second order approximation to know the

non-stochastic efficient steady state firm j sales in a given region l ∈L j . This is given by

salesl j = (1−τl )P¦
l j Y s

l j t = P¦
l jζlθl j

(P¦
l j

Pl

) Λl
1−Λl Cl

= (1−τl )ζlθl j

P¦
l j

Pl

(P¦
l j

Pl

) Λl
1−Λl W

= (1−τl )ζlθl j

(P¦
l j

Pl

) 1
1−Λl

=Λlζlθl j

Firm j ’s total sales are given by

sales j =
∑

l∈[n]
Λlζlθl j (93)

F Log-Linearization

This section derives the log-linearized optimality conditions. Let small letters denote the log devi-

ations of their corresponding variables from their non-stochastic steady state equilibrium values.

That is, xt ≡ ln(X t/X ).

Region l ’s price index. From Equation (67), we have

P
1

1−Λl t
l t −

∫ 1

0
θl j P

1
1−Λl t

l j t d j = 0

(
Pl epl t

) 1

1−Λl eλl t −
∫ 1

0
θl j

(
Pl j epl j t

) 1

1−Λl eλl t d j = 0
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Let f (pl t ,λl t , (pl j t ) j∈[0,1]) ≡
(
Pl epl t

) 1

1−Λl eλl t −∫ 1
0 θl j

(
Pl j epl j t

) 1

1−Λl eλl t d j . Performing a first-order Tay-

lor expansion of f (.) around 0 gives us

f (pl t ,λl t , (pl j t ) j∈[0,1]) ≈ f (0)+ fpl t (0)(pl t −0)+ fλl t (0)(λl t −0)+
∫ 1

0
fpl j t (0)(pl j t −0)d j

where f (0) = 0, fpl t (0) = 1
1−Λl

P
1

1−Λl
l , fλl t (0) = 0, fpl j t (0) =−θl j

1
1−Λl

P
1

1−Λl
l j , which gives us

f (pl t ,λl t , (pl j t ) j∈[0,1]) ≈ 1

1−Λl
P

1
1−Λl

l pl t +
∫ 1

0
(−θl j

1

1−Λl
P

1
1−Λl

l j )pl j t d j

≈ 1

1−Λl
(1−β)

1
1−Λl pl t −

1

1−Λl
(1−β)

1
1−Λl

∫ 1

0
θl j pl j t d j

Hence, up to a first order we have

pl t =
∫ 1

0
θl j pl j t d j (94)

Household in region l optimal intratemporal condition. Taking logs in Equation (72), we get

pl t + cl t = wt (95)

Household in region l optimal intertemporal condition. Let Rt ≡ (1+ it ). We can rewrite Equa-

tion (73) as

E
[
βRt

Wt

Wt+1

]= 1

E
[
βRert

ewt

ewt+1

]= 1

Now, let f (rt , wt , wt+1) = βRert ewt

ewt+1 . Performing a first-order Taylor expansion of f (.) around

(0,0,0) gives us

f (rt , wt , wt+1) ≈ f (0,0,0)+ frt (0,0,0)(rt −0)+ fwt (0,0,0)(wt −0)+ fwt+1 (0,0,0)(wt+1 −0)

where f (0,0,0) =βR, frt (0,0,0) =βR, fwt (0,0,0) =βR, and fwt+1 (0,0,0) =−βR. Hence,

f (rt , wt , wt+1) ≈βR +βRrt +βRwt −βRwt+1
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Recall that βR = 1. This implies that up to a first-order we have

rt +wt −E
[
wt+1

]= 0 (96)

Monopolistic competitive retailer’s marginal cost. Taking logs in Equation (75), we get

mcl j t = wt (97)

Ideal prices. Taking logs of Equation (77) and recalling there’s no disturbances to regional taxes,

we get

p¦
l j t =λl t ×mcl j t =λl t ×wt (98)

Aggregate real GDP and aggregate prices. From the definitions of aggregate real GDP and aggre-

gate prices, we have

ct =
∑

l∈[n]
ζl cl t (99)

pt =
∑

l∈[n]
ζl pl t (100)

mt ≡ pt + ct =
∑

l∈[n]
ζl (pl t + cl t ) (101)

Wages. To characterize the log-linearization of wages, we combine Equation (95) and Equation (101)

mt =
∑

l∈[n]
ζl (pl t + cl t )

= ∑
l∈[n]

ζl (wt )

mt = wt (102)
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Interest rates. Finally, to characterize the interest rates rt , we combine Equation (102), Equa-

tion (96), and the process for nominal GDP mt = mt−1 +σuut ,ut ∼ N (0,1)

rt +wt −E
[
wt+1

]= 0

rt +mt −E
[
mt+1

]= 0

rt +mt −E
[
mt +σuut+1

]= 0

which implies in

rt = 0 (103)

and, using the definition of rt ≡ log (1+it )
(1+i )

it = 1

β
−1 (104)

where we use that in the steady state (1+ i ) = 1/β. Therefore, note that under nominal GDP target-

ing, the interest rates are endogenously constant and equal to 1/β−1.

Fundamental shocks. The shocks {mt ,λ1t , . . . ,λnt } can be characterized as

~xt = A~xt−1 +Q~ut ,~ut ∼N (~0,I) (105)

G Second Order Approximation of the Profit Function

I solve the firm’s rational inattention problem by performing a second order approximation of the

profit function around the non-stochastic efficient steady state. The derivation of the profit func-

tion follows Mackowiak and Wiederholt (2009, 2015). Let the profit of the firm j be given by

Π j ((Pl j )l∈[L j ];Wt , (Pl t )l∈[n], (Λl t )l∈[n]) =
n∑

l=1
ζl

U ′(Cl t )

Pl t

[ ∑
l∈[L j ]

ζlθl j

(
(1−τl t )P

1+ Λl t
1−Λl t

l j t −Wt P
Λl t

1−Λl t
l j t

)
P
−1− Λl t

1−Λl t
l t Wt

]

= ∑
l∈[L j ]

ζlθl j

(
(1−τl t )P

1+ Λl t
1−Λl t

l j t −Wt P
Λl t

1−Λl t
l j t

)
P
−1− Λl t

1−Λl t
l t
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where I assume that the stochastic discount factor is given by
∑n

l=1 ζl
U ′(Cl t )

Pl t
. Let

π j ((pl j t )l∈[n];wt , (pl t )l∈[n], (λl t )l∈[n]) ≡Π j ((Pl j epl j t )l∈[n];W ewt , (Pl epl t )l∈[n], (Λl eλl t )l∈[n])

= ∑
l∈[L j ]

ζlθl j

(
(1−τl t )(Pl j epl j t )

1

1−Λl eλl t −W ewt (Pl j epl j t )
Λl eλl t

1−Λl eλl t
)
(Pl epl t )

−1− Λl eλl t

1−Λl eλl t

Now, define ~̃xt = (wt , p1t , p2t , . . . , pnt ,λ1t ,λ2t , . . . ,λnt )′ ∈R2n+1 and ~a j t = (pl j t )l∈[L j ]. So

π j (~a j t ;~̃xt ) =π j ((pl j t )l∈[L j ]; wt , (pl t )l∈[n], (λl t )l∈[n])

Let ~̃x0 = 0(2n+1)×1. A second-order Taylor approximation of the profit function around ~̃x0 is

π j (~a j t ;~̃xt ) ≈π j (~a¦
j t (~̃x0);~̃x0)+ (

h′
a (~a¦

j t (~̃x0),~̃x0),h′
x (~a¦

j t (~̃x0),~̃x0)
)(
~a j t −~a¦

j t (~̃x0),~̃x j t −~̃x0)

+ (~a′
j t −~a¦′

j t (~̃x0),~̃x ′
j t −~̃x0′)H j

 ~a j t −~a¦
j t (~̃x0)

~̃x j t −~̃x0


≈π j (~a¦

j t (~̃x0),~̃x0)+h′
x (~a¦

j t (~̃x0),~̃x0)(~̃xt )+ 1

2
(~a′

j t )Ha, j (~a j t )+ (~a′
j t )Hax, j (~̃xt )+ 1

2
(~̃x ′

t )Hx(~̃xt )

recalling that at the optimum h′
a(~a¦

j t (~̃x0),~̃x0) =~0, where

H j ≡

 Ha, j Hax, j

Hxa, j Hx, j


with Ha, j =

[
∂2π

∂pi j t∂pk j t

∣∣
~̃x0

]
i∈[L j ],k∈[L j ] being the matrix of second derivatives of actions. Hax, j =[

∂2π
∂pi j t∂xkt

]
i∈[L j ],k∈{1,...,2n+1} is the matrix with cross derivatives of actions and states, and Hx, j =[

∂2π
∂xkt∂x j t

∣∣
~̃x0

]
k, j∈{1,2,...,2n+1} the matrix of second derivatives of states. At the optimum, we have

~a¦
j t =−H −1

a, j Hax, j~̃xt

Now, ~a∗
j t be such ~a∗

j t = argmax~aE
[
π(~a;~̃xt )|S j t

]
, S j t being the history of signals up to time t . Then

the profit losses arising from information frictions can be written as

π j (~a∗
j t ;~̃x)−π j (~a¦

j t ;~̃x) = 1

2
~a∗′

j t Ha, j~a
∗
j t −

1

2
~a¦′

j t Ha, j~a
¦
j t +~a∗′

j t Hax, j~̃xt −~a¦′
j t Hax, j~̃xt
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Using ~a¦
j t =−H −1

a, j Hax, j~̃xt , we have that ~a∗
j t =−H −1

a, j Hax, jE[~̃xt |S j t ] and we can show that

π j (~a∗
j t ;~̃x)−π j (~a¦

j t ;~̃x) = 1

2
(~a∗′

j t −~a¦′
j t )Ha, j (~a∗

j t −~a¦
j t ) (106)

Ha, j determines how mistakes in pricing for the many regions affect firm’s profits. It also de-

termines the extent to which mistakes in pricing in one of the regions are complements or sub-

stitutes to mistakes in pricing in other regions. Given the assumption of monopolistic competi-

tion, Ha, j is going to be diagonal, implying there is no complementarity or substitutability in ac-

tions. −Ha, j Hax, j the map of fundamental shocks into actions. Now, let’s calculate these objects.

Let π j
l (~a j t ;~̃xt ) = ∂π j

∂pl j t
, π j

lm(~a j t ;~̃xt ) = ∂2π j

∂pl j t∂pm j t
, π j

l w (~a j t ;~̃xt ) = ∂2π j

∂pl j t∂wt
, π j

l pm
(~a j t ;~̃xt ) = ∂2π j

∂pl j t∂pmt
, and

π
j
lλm

(~a j t ;~̃xt ) = ∂2π j

∂pl j t∂λmt
. Then,

π
j
l (~a j t ;~̃xt ) = ζlθl j

(
(1−τl )

( 1

1−Λl eλl t

)
(Pl j epl j t )

1

1−Λl eλl t −W ewt
( Λl eλl t

1−Λl eλl t

)
(Pl j epl j t )

Λl eλl t

1−Λl eλl t
)
(Pl epl t )

−1− Λl eλl t

1−Λl eλl t

π
j
lm(~a j t ;~̃xt ) = ζlθl j

((
1

1−Λl eλl t

)2
(1−τl )(Pl j epl j t )

1

1−Λl eλl t −W ewt

(
Λl eλl t

1−Λl eλl t

)2
(Pl j epl j t )

Λl eλl t

1−Λl eλl t
)
(Pl epl t )

−1− Λl eλl t

1−Λl eλl t

0

, if l ∈ [L j ],m = l

, otherwise

π
j
l w (~a j t ;~̃xt ) =−ζlθl j

(
W ewt

( Λl eλl t

1−Λl eλl t

)
(Pl j epl j t )

Λl eλl t

1−Λl eλl t
)
(Pl epl t )

−1− Λl eλl t

1−Λl eλl t

π
j
l pm

(~a j t ;~̃xt ) = 1
1−Λl eλl t

ζlθl j

(
(1−τl )

(
1

1−Λl eλl t

)
(Pl j epl j t )

1

1−Λl eλl t −W ewt

(
Λl eλl t

1−Λl eλl t

)
(Pl j epl j t )

Λl eλl t

1−Λl eλl t
)
(Pl epl t )

−1− Λl eλl t

1−Λl eλl t

0

, if l ∈ [L j ],m = l

, otherwise

π
j
lλm

(~a j t ;~̃xt ) ={
ζl θl j

(
(1−τl )Pl j e

pl j t (Pl epl t )−1eTl t
[

(g ′(λl t ))(Pl j e
pl j t (Pl epl t )−1)g (λl t ) + (1+ g (λl t ))(Pl j e

pl j t (Pl epl t )−1)g (λl t )g ′(λl t ) ln(Pl j e
pl j t (Pl epl t )−1)

]
−W ewt (Pl epl t )−1

[
g ′(λl t )(Pl j e

pl j t (Pl epl t )−1)g (λl t ) + g (λl t )(Pl j e
pl j t (Pl epl t )−1)g (λl t )g ′(λl t ) ln(Pl j e

pl j t (Pl epl t )−1)
])

0

, if l ∈ [L j ],m = l

, otherwise
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where g (λl t ) ≡ Λl eλl t

1−Λl eλl t
. Now, evaluating these objects at ~̃x0

t = 0, that is, around the non-stochastic

steady state, we have

π
j
lm(0;0) =

 −ζlθl j

(
Λl
Λl−1

)
0

, if l ∈ [L j ],m = l

, otherwise

and Ha, j is a diagonal matrix.

π
j
l w (0;0) = ζlθl j

( Λl

Λl −1

)

π
j
l pm

(0;0) = 0,∀m ∈ [n]

π
j
lλm

(0;0) =

 ζlθl j
Λl

(Λl−1)

0

, if l ∈ [L j ],m = l

, otherwise

Now, we can calculate ~a¦
j t = (p¦

l j t )l∈[L j ] and ~a∗
j t = (p∗

l j t )l∈[L j ]

p¦
l j t = wt +λl t , l ∈ [L j ]

p∗
l j t = E[wt +λl t |S j t ], l ∈ [L j ]

With the equations above and Equation (106) we are ready to solve the Rational Inattention prob-

lem.

Firm’s Rational Inattention problem. The rational inattention firm’s problem is given by

max
{S j ,t⊂St ,{pl j t (St

j )}l∈L j
}t≥0

E
[ ∞∑

t=0

∑
l∈L j

−Bl j

2
(pl j t −p¦

l j t )2
]

(107)

s.t. I(S t
j ;~x t |S t−1

j ) ≤ κ j (info. processing constraint) (108)

S t
j = S t−1

j ∪S j t , S−1
j given(evolution of information set) (109)

with Bl j = ζlθl j
Λl
Λl−1
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H Model Simulation

In this section, I describe the simulation of the panel of firms that is used to calibrate κ and to run

the model validation regression. The quantitative model features ex-ante heterogeneous firms,

where each different firm ex-ante heterogeneity is summarized by the set of of regions where it

operates ι ∈ {1,0}n \ {~0}. First, for each different ex-ante heterogeneity ι with positive measure, ϕι >
0, I solve for the steady state information structure (Σ̄−1(ι), Σ̄(ι),Ω̄(ι),ω̄(ι)) using DRIP from Afrouzi

and Yang (2021), where ω̄(ι) is the steady-state lagrange multiplier associated with the capacity

constraint of firm ex-ante heterogeneity ι. Then, I simulate N f firms for T +Tburn periods, where

I burn the first Tburn periods. Let pl j t be the price in region l , for firm j at time t . I end up with a

balanced panel of firm-location prices, described by {pl j t }Tburn+1≤t≤T, j∈{1,...,N f },l∈[L j ]. At the end, we

haveϕιN f firms with ex-ante heterogeneity ι, with
∑
ιϕιN f = N f . I choose N f = 5000, T = 500, and

Tburn = 100. To simulate {pl j t }0≤t≤T we need to simulate time series of the fundamental shocks

{~xt }0≤t≤T and rational inattention shocks {~ν j t }0≤t≤T, j∈{1,...,N f }, where~xt = (mt ,λ1t , . . . ,λnt )′, and~ν j t

is a vector with dimension that depends on the number of signals that the firm j chooses to receive.

Note that under full information, {~xt }0≤t≤T would be sufficient to describe firms’ prices. Before

describing the simulation, let’s define some objects.

Let H(ι) be the map between states and actions for ι. That is, ~p¦
j t = H′(ι)~xt , j ∈ ι. Let the law of

motion of fundamental shocks be given by

~xt = A~xt−1 +Q~ut , ~ut ∼N (~0,I)

For each ι, such that ϕι > 0, consider the set of optimal signals associated with the steady-state

information structure (Σ̄−1(ι), Σ̄(ι),Ω̄(ι),ω̄(ι)), {si j ,t (ι)}1≤i≤k(ι) for a firm j with type ι:

si j ,t (ι) = g′
i (ι)~xt +νi j ,t (ι), νi j ,t (ι) ∼N (0,V (νi (ι)))

where k(ι) is the number of signals that type ι acquires, gi (ι) is the vector of loadings associated

with signal i for type ι, and νi j ,t is the rational inattention error that firm j of type ι receives as-

sociated with signal i . Note that the only element that makes the signal to depend on j is the

realization of νi j ,t . Finally, let di be the eigenvalue of the matrix ¯Σ(ι)
1
2
−1

¯Ω(ι) ¯Σ(ι)
1
2
−1 associated with

the signal i . Now, we can describe the simulation.

1. Draw {~ut }1≤t≤T+Tburn from N (~0,I). Then, for t ∈ {1, . . . ,T +Tburn}, calculate~xt = A~xt−1 +Q~ut ,
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where~x−1 =~0.

2. Calculate {N f (ι)}ι, where N f (ι) =ϕιN f is the number of firms with type ι.

3. For each ι such that ϕι > 0,

(a) Draw time series of Rational Inattention shocks for firms of type ι, {~ν j t (ι)} j∈{1,...,N f (ι)},1≤t≤T+Tburn

(b) For each firm j ∈ {1, . . . , N f (ι)},

i. Calculate the law of motion of conditional expectations

E[~xt |St
j (ι)] = AE[~xt−1|St−1

j (ι)]+
k(ι)∑
i=1

(
1− ω̄(ι)

di (ι)

)
Σ̄−1(ι)gi (ι)(g′

i (ι)(~xt −AE[~xt−1|St−1
j ])+νi j ,t (ι))

where St
j (ι) = St−1

j (ι)∪{si j t (ι)}1≤i≤k(ι) is the history of signals up to t , and E[~x−1|S−1
j (ι)] =

~0

ii. Calculate the optimal actions

~p j t (ι) = H′(ι)E[~xt |St
j (ι)]

I Data

In this section, I describe the details of the data used in Section 3.3 and Section 3.5.

I.1 The NielsenIQ Retail Scanner Data

The main dataset used in this paper is the NielsenIQ Retail Scanner Data (NielsenIQ). This dataset

contains weekly scanner prices and quantities for different products (UPCs) for retail stores that

share data with NielsenIQ for the whole U.S. market. I use data from 2006 to 2019 for food stores

in the United States.

I restrict the set of chains and stores used in the analysis. I define a chain to be a unique com-

bination of two identifiers in the NielsenIQ data: parent_code and retailer_code. The parent_code

can be either the corporate parent or the retail banner of the store, depending on how the retailer

releases the data to NielsenIQ. The retailer_code may or may not be the same as the parent_code.

If a retailer has many banners, the retailer_code may be one of the banners. Over time, it may be

the case that a given retailer_code is associated with more than one parent_code, which can occur
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because of ownership changes. A general example taken from DellaVigna and Gentzkow (2019)

would be the Albertson’s LLC parent company, which owns chains like Albertson’s and Shaw’s.

The stores used in my main analysis satisfy the following criteria: 1) I consider only food

stores15; 2) I exclude stores without retailer_code; 3) Keep only stores with unique chains, that

is keep stores with unique (parent_code, retailer_code) pairs; 4) I drop stores with less than or

equal to two years in the data; 5) keep stores that are present in the data for at least 10 years.

After applying these restriction, I am left with 9479 stores from 65 chains. We further restrict

the sample of stores: 6) I exclude stores that change fips_code, defined as the combination of

(fips_state_code,fips_county_code); 7) I keep only stores present in a core-based statistical area

(CBSA)16. This leaves me with a final sample of 8859 stores from 65 chains.

I restrict the set of potential products used in the analysis. Each product is characterized by

its UPC, which is a 12 numeric digit code associated with a barcode. The NielsenIQ Retail Scan-

ner data classifies products in 10 different departments. Within each department, products are

classified into different product groups, which are further classified into different modules. An

example of a module, its product group, and its department is the module ‘cereal - ready to eat’,

that belongs to the ‘cereal’ product group, that belongs to the ‘dry grocery’ department. I restrict

the set of potential products I use in my analysis to those belonging to the following departments:

dry grocery, frozen foods, dairy, deli, packaged meat, fresh produce, and alcoholic beverages 17.

In additional to these products, I include all product categories that are used in DellaVigna and

Gentzkow (2019), but are not in these departments18.

To assess how stringent were the data filters I applied, I construct a U.S. NielsenIQ price index

following the methodology of Beraja, Hurst, and Ospina (2019). I then compare its year-over-year

changes with the CPI for food at home, as illustrated in Figure J.23. The close alignment between

the two series indicates that the sample I am using is representative of the prices included in the

CPI for food at home.

I.2 Calibration of σu

To calibrate σu , I first download the U.S. nominal GDP series from St. Louis FRED (code: NGDP-

SAXDCUSQ) for the period from January, 1990 until January, 2020. Then, I use a spline routine to

15The other possible channels are: convenience stores, drug stores, mass mechandisers, and liquor stores.
16I use CBSA codes from 2018.
17The other departments are: health & beauty care, non-food grocery, and general merchandise.
18The modules are toilet tissue, detergents - heavy duty - liquid, paper towels, cold remedies - adult, pain remedies

- headache, batteries, bleach - liquid/gel
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interpolate the nominal GDP series to get a monthly series. Then, a calculate the log difference

and take its standard deviation. Figure I.1 shows both the raw data and the monthly spline series.

Figure I.1: Nominal GDP
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Notes: This figure plots U.S. nominal GDP series (St. Louis FRED code: NGDPSAXDCUSQ) and its monthly interpo-
lated series.

I.3 Calibration of {σl }l∈{1,...,12}

To calibrate {σl }l∈{1,...,12} I use the Quarterly Census of Employment and Wages data from the Bu-

reau of Labor Statistics for the period from January, 1990 until December, 2019. I consider the

county level employment for private sector in all industries and aggregate it at the Federal Reserve

district level, using the table mapping counties to Federal Reserve districts provided in https://

www.kansascityfed.org/research/technical-briefings-sub/federal-reserve-district-county-shapefiles/.

Then, seasonally adjust each Federal Reserve district employment level using X13.

https://www.kansascityfed.org/research/technical-briefings-sub/federal-reserve-district-county-shapefiles/
https://www.kansascityfed.org/research/technical-briefings-sub/federal-reserve-district-county-shapefiles/
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Table I.1: Federal Reserve Districts Shock Volatilities

Fed District Standard Deviation

Boston 0.002657

New York 0.002288

Philadelphia 0.002245

Cleveland 0.002306

Richmond 0.002535

Atlanta 0.002706

Chicago 0.004916

St. Louis 0.009098

Minneapolis 0.002602

Kansas City 0.005456

Dallas 0.002666

San Francisco 0.002716

I.4 Calibration of Taste Shifters {θl j }l∈{1,...,12}, j∈[0,1]

In the efficient steady state, the household’s expenditure share is given by

θl j∫ 1
0 θl j d j

= Pl j Cl j

PlCl

where
Pl j Cl j

Pl Cl
is the consumption share of location l on retailer j . I assume that

∫ 1
0 θl j d j = 1, ∀l ∈

[n]. Furthermore, I assume that for each l ∈ [n], firms that are present in the same number of

locations have the same θl j . Therefore,

θl ,k regions ×
∫ 1

0
1{ j in l and k −1 other regions}d j =

∫ 1
0 Pl j Cl j 1{ j in l and k −1 other regions}d j

PlCl

θl ,k regions ×
∑
ι∈l
ϕι = Expenditure on chains in l and k −1 other regions

Expenditure in l

where
∑
ι∈l ϕι is the measure of types that are present in l , 1{ j in l and k − 1 other regions} is a

dummy that takes the value of one if j in l and k −1 other regions and zero otherwise.
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I.5 Data Moment

The data moment I use to calibrate m(κ) is given by

mdata =
∑

t

(∑
j

[∑
c

varc j t (p̂cl j t )

varct (p̂cl j t )

])

where g index a UPC, c a product category, l a county, j a chain, t a time period (month), varc j t ≡
1

Nl−1

∑
l (p̂cl j t − 1

Nl

∑
l p̂cl j t )2, and varct ≡ 1

Nl j−1

∑
j
∑

l (p̂cl j t − 1
Nl j

∑
j
∑

l p̂cl j t )2, with Nl being the

number of locations Nl j the number of locations and firms, with p̂cl j t is defined as

p̂cl j t =
1

Ng

∑
g∈c

p̂cl j t (g )

where Ng is the number of UPCs in category c for firm j in location l at time t , where I omit the

fact that it depends on l j t . p̂cl j t (g ) is given by

p̂cl j t (g ) = pcl j t (g )−µg −εg t −µcl

where µg = 1
Nt j l

∑
t
∑

j
∑

l pcl j t (g ), εg t = 1
N j l

∑
j
∑

l (pcl j t (g )−µg ), µcl = 1
Nt j

∑
t
∑

j (pcl j t (g )−µg −εg t )

and I calculate these objects within a category. Nt j l is the number periods, firms, and locations,

recalling that firms may be present in different number of locations, for different number of pe-

riods, and good prices availability may vary along all these dimensions. Finally, pcl j t (g ) is the

reference price for g in location l , firm j , and time period (month) t . That is, as in Eichenbaum,

Jaimovich, and Rebelo (2011), for a good g , it is the most often quoted (mode) price for chain j ,

county l across all of its stores at month t . Therefore, we are collapsing store-week price level into

chain-county-month level data. I only use observations with only one mode.
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J Additional Figures

Figure J.1: Impulse response functions to a markup shock in the Boston Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. Boston Fed
district.
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Figure J.2: Impulse response functions to a markup shock in the Boston Fed district

0 3 6 9 12 15

Time (Months)

-0.05

0

0.05
Boston Markup Shock : Aggregate Inflation

Calibrated
Decentralized Pricing

0 3 6 9 12 15

Time (Months)

-0.04

-0.02

0
Boston District Markup Shock : Aggregate GDP

CIR Ratio = 0.97582

Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. Boston Fed
district.



46

Figure J.3: Impulse response functions to a markup shock in the New York Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. New York Fed
district.
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Figure J.4: Impulse response functions to a markup shock in the New York Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. New York Fed
district.
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Figure J.5: Impulse response functions to a markup shock in the Philadelphia Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. Philadelphia
Fed district.
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Figure J.6: Impulse response functions to a markup shock in the Philadelphia Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. Philadelphia
Fed district.
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Figure J.7: Impulse response functions to a markup shock in the Cleveland Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. Cleveland Fed
district.
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Figure J.8: Impulse response functions to a markup shock in the Cleveland Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. Cleveland Fed
district.
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Figure J.9: Impulse response functions to a markup shock in the Richmond Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. Richmond Fed
district.
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Figure J.10: Impulse response functions to a markup shock in the Richmond Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. Richmond Fed
district.
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Figure J.11: Impulse response functions to a markup shock in the Chicago Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. Chicago Fed
district.
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Figure J.12: Impulse response functions to a markup shock in the Chicago Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. Chicago Fed
district.
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Figure J.13: Impulse response functions to a markup shock in the St. Louis Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. St. Louis Fed
district.
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Figure J.14: Impulse response functions to a markup shock in the St. Louis Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. St. Louis Fed
district.
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Figure J.15: Impulse response functions to a markup shock in the Minneapolis Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. Minneapolis
Fed district.
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Figure J.16: Impulse response functions to a markup shock in the Minneapolis Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. Minneapolis
Fed district.
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Figure J.17: Impulse response functions to a markup shock in the Kansas City Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. Kansas City
Fed district.
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Figure J.18: Impulse response functions to a markup shock in the Kansas City Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. Kansas City
Fed district.
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Figure J.19: Impulse response functions to a markup shock in the Dallas Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. Dallas Fed
district.
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Figure J.20: Impulse response functions to a markup shock in the Dallas Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. Dallas Fed
district.
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Figure J.21: Impulse response functions to a markup shock in the San Francisco Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. San Francisco
Fed district.
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Figure J.22: Impulse response functions to a markup shock in the San Francisco Fed district
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Notes: This figure plots impulse response functions for aggregate inflation and aggregate GDP to a standard devia-
tion positive monetary shock. CIR Ratio denotes the ratio of CIR of the benchmark economy to the counterfactual
economy. The counterfactual economy is an economy without multi-region firms. The counterfactual economy is an
economy where firms set price in a decentralized way. The y-axis is in standard deviation of the shock. San Francisco
Fed district.
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Figure J.23: Price indices: NielsenIQ × CPI food at home
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Notes: This figure plots year-over-year inflation for the NielsenIQ price index and the CPI food at home. The NielsenIQ
price index was constructed following Beraja, Hurst, and Ospina (2019). It was constructed at the weekly level. To
construct the monthly index, I took the average of the index within the month.
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Figure J.24: Histogram of relative price dispersion
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Notes: This figure plots the histogram of within-chain, between-county relative price dispersion for pairs of prices with
counties ≥ 150 miles of distance and between-chain, within-county relative price dispersion.

Figure J.25: Histogram of distance coefficient
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Figure J.26: Histogram of same chain coefficient
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Figure J.27: Histogram of same district coefficient
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